scispace - formally typeset
Search or ask a question
Author

Yawen Bai

Bio: Yawen Bai is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Nucleosome & Protein folding. The author has an hindex of 38, co-authored 72 publications receiving 7398 citations. Previous affiliations of Yawen Bai include Scripps Research Institute & University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
01 Sep 1993-Proteins
TL;DR: The results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured aligo‐ and polypeptides.
Abstract: The rate of exchange of peptide group NH hydrogens with the hydrogens of aqueous solvent is sensitive to neighboring side chains. To evaluate the effects of protein side chains, all 20 naturally occurring amino acids were studied using dipeptide models. Both inductive and steric blocking effects are apparent. The additivity of nearest-neighbor blocking and inductive effects was tested in oligo- and polypeptides and, surprisingly, confirmed. Reference rates for alanine-containing peptides were determined and effects of temperature considered. These results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured oligo- and polypeptides. The application of this approach to protein studies is discussed.

1,779 citations

Journal ArticleDOI
14 Jul 1995-Science
TL;DR: The partially unfolded forms detected by hydrogen exchange appear to represent the major intermediates in the reversible, dynamic unfolding reactions that occur even at native conditions and thus may define the major pathway for cytochrome c folding.
Abstract: The hydrogen exchange behavior of native cytochrome c in low concentrations of denaturant reveals a sequence of metastable, partially unfolded forms that occupy free energy levels reaching up to the fully unfolded state. The step from one form to another is accomplished by the unfolding of one or more cooperative units of structure. The cooperative units are entire omega loops or mutually stabilizing pairs of whole helices and loops. The partially unfolded forms detected by hydrogen exchange appear to represent the major intermediates in the reversible, dynamic unfolding reactions that occur even at native conditions and thus may define the major pathway for cytochrome c folding.

981 citations

Journal ArticleDOI
01 Sep 1993-Proteins
TL;DR: Results obtained are expressed in terms of rate constants for the random coil polypeptide, poly‐DL‐alanine, to provide reference rates for protein hydrogen exchange studies as described in Bai et al.
Abstract: Kinetic and equilibrium isotope effects in peptide group hydrogen exchange reactions were evaluated. Unlike many other reactions, kinetic isotope effects in amide hydrogen exchange are small because exchange pathways are not limited by bond-breaking steps. Rate constants for the acid-catalyzed exchange of peptide group NH, ND, and NT in H2O are essentially identical, but a solvent isotope effect doubles the rate in D2O. Rate constants for base-catalyzed exchange in H2O decrease slowly in the order NH > ND > NT. The alkaline rate constant in D2O is very close to that in H2O when account is taken of the glass electrode pH artifact and the difference in solvent ionization constant. Small equilibrium isotope effects lead to an excess equilibrium accumulation of the heavier isotopes by the peptide group. Results obtained are expressed in terms of rate constants for the random coil polypeptide, poly-DL-alanine, to provide reference rates for protein hydrogen exchange studies as described in Bai et al. [preceding paper in this issued].

360 citations

Journal ArticleDOI
TL;DR: The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosomes and organize higher-order chromatin structures.
Abstract: Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 A resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.

316 citations

Journal ArticleDOI
31 May 2013-Science
TL;DR: The findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.
Abstract: Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Kinetochore assembly depends on specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A and H2B. We further found that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.

307 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The general energy landscape picture provides a conceptual framework for understanding both two-state and multi-state folding kinetics and hopes to learn much more about the real shapes of protein folding landscapes.
Abstract: A new view of protein folding kinetics replaces the idea of ‘folding pathways’ with the broader notions of energy landscapes and folding funnels. New experiments are needed to explore them.

2,320 citations

Journal ArticleDOI
01 Sep 1993-Proteins
TL;DR: The results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured aligo‐ and polypeptides.
Abstract: The rate of exchange of peptide group NH hydrogens with the hydrogens of aqueous solvent is sensitive to neighboring side chains. To evaluate the effects of protein side chains, all 20 naturally occurring amino acids were studied using dipeptide models. Both inductive and steric blocking effects are apparent. The additivity of nearest-neighbor blocking and inductive effects was tested in oligo- and polypeptides and, surprisingly, confirmed. Reference rates for alanine-containing peptides were determined and effects of temperature considered. These results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured oligo- and polypeptides. The application of this approach to protein studies is discussed.

1,779 citations

Journal ArticleDOI
TL;DR: Results of this analysis showed that intrinsically unstructured proteins do not possess uniform structural properties, as expected for members of a single thermodynamic entity, and the Protein Quartet model, with function arising from four specific conformations (ordered forms, molten globule, premolten globules, and random coils) is discussed.
Abstract: The experimental material accumulated in the literature on the conformational behavior of intrinsically unstructured (natively unfolded) proteins was analyzed. Results of this analysis showed that these proteins do not possess uniform structural properties, as expected for members of a single thermodynamic entity. Rather, these proteins may be divided into two structurally different groups: intrinsic coils, and premolten globules. Proteins from the first group have hydrodynamic dimensions typical of random coils in poor solvent and do not possess any (or almost any) ordered secondary structure. Proteins from the second group are essentially more compact, exhibiting some amount of residual secondary structure, although they are still less dense than native or molten globule proteins. An important feature of the intrinsically unstructured proteins is that they undergo disorder–order transition during or prior to their biological function. In this respect, the Protein Quartet model, with function arising from four specific conformations (ordered forms, molten globules, premolten globules, and random coils) and transitions between any two of the states, is discussed.

1,750 citations

Journal ArticleDOI
Wei Wang1
TL;DR: The basic behavior of proteins, their instabilities, and stabilization in aqueous state in relation to the development of liquid protein pharmaceuticals is discussed.

1,288 citations

Book ChapterDOI
TL;DR: It is predicted and confirmed experimentally that the molten globule state can exist in a living cell and plays an important role in a number of physiological processes.
Abstract: Publisher Summary This chapter describes the present state of the studies of the molten globule state and its role in protein folding and physiological processes Recent data on the intermediates (equilibrium and kinetic), focusing attention on the molten globule state are discussed in the chapter The molten globule has a native-like overall architecture (folding pattern) without including the rigid packing of side chains It is separated by first-order phase transitions from both the native and the unfolded states and represents a third thermodynamic state of protein molecules It is a universal kinetic intermediate in protein folding; the structure of this intermediate is similar to the structure of the equilibrium molten globule It is predicted and confirmed experimentally that the molten globule state can exist in a living cell and plays an important role in a number of physiological processes

1,163 citations