Author
Yaxiong Xie
Other affiliations: Nanyang Technological University
Bio: Yaxiong Xie is an academic researcher from Princeton University. The author has contributed to research in topics: Computer science & Artificial intelligence. The author has an hindex of 10, co-authored 16 publications receiving 775 citations. Previous affiliations of Yaxiong Xie include Nanyang Technological University.
Papers
More filters
07 Sep 2015
TL;DR: Splicer, a software-based system that derives high-resolution power delay profiles by splicing the CSI measurements from multiple WiFi frequency bands is presented and a set of key techniques to separate the mixed hardware errors from the collected CSI measurements are proposed.
Abstract: Power delay profiles characterize multipath channel features, which are widely used in motion- or localization-based applications. Recent studies show that the power delay profile may be derived from the CSI traces collected from commodity WiFi devices, but the performance is limited by two dominating factors. The resolution of the derived power delay profile is determined by the channel bandwidth, which is however limited on commodity WiFi. The collected CSI reflects the signal distortions due to both the channel attenuation and the hardware imperfection. A direct derivation of power delay profiles using raw CSI measures, as has been done in the literature, results in significant inaccuracy. In this paper, we present Splicer, a software-based system that derives high-resolution power delay profiles by splicing the CSI measurements from multiple WiFi frequency bands. We propose a set of key techniques to separate the mixed hardware errors from the collected CSI measurements. Splicer adapts its computations within stringent channel coherence time and thus can perform well in presence of mobility. Our experiments with commodity WiFi NICs show that Splicer substantially improves the accuracy in profiling multipath characteristics, reducing the errors of multipath distance estimation to be less than $2m$. Splicer can immediately benefit upper-layer applications. Our case study with recent single-AP localization achieves a median localization error of $0.95m$.
454 citations
TL;DR: Splicer, a software-based system that derives high-resolution power delay profiles by splicing the CSI measurements from multiple WiFi frequency bands is presented and a set of key techniques to separate the mixed hardware errors from the collected CSI measurements are proposed.
Abstract: Power delay profiles characterize multipath channel features, which are widely used in motion- or localization-based applications. The performance of power delay profile obtained using commodity Wi-Fi devices is limited by two dominating factors. The resolution of the derived power delay profile is determined by the channel bandwidth, which is however limited on commodity WiFi. The collected CSI reflects the signal distortions due to both the channel attenuation and the hardware imperfection. A direct derivation of power delay profiles using raw CSI measures, as has been done in the literature, results in significant inaccuracy. In this paper, we present Splicer, a software-based system that derives high-resolution power delay profiles by splicing the CSI measurements from multiple WiFi frequency bands. We propose a set of key techniques to separate the mixed hardware errors from the collected CSI measurements. Splicer adapts its computations within stringent channel coherence time and thus can perform well in the presence of mobility. Our experiments with commodity WiFi NICs show that Splicer substantially improves the accuracy in profiling multipath characteristics, reducing the errors of multipath distance estimation to be less than $2\;\mathrm{m}$2m. Splicer can immediately benefit upper-layer applications. Our case study with recent single-AP localization achieves a median localization error of $0.95\;\mathrm{m}$0.95m.
274 citations
05 Aug 2019
TL;DR: In this article, the authors proposed mD-Track, a device-free Wi-Fi tracking system capable of jointly fusing information from as many dimensions as possible to overcome the resolution limit of each individual dimension.
Abstract: Wi-Fi localization and tracking face accuracy limitations dictated by antenna count (for angle-of-arrival methods) and frequency bandwidth (for time-of-arrival methods). This paper presents mD-Track, a device-free Wi-Fi tracking system capable of jointly fusing information from as many dimensions as possible to overcome the resolution limit of each individual dimension. Through a novel path separation algorithm, mD-Track can resolve multipath at a much finer-grained resolution, isolating signals reflected off targets of interest. mD-Track can localize human passively at a high accuracy with just a single Wi-Fi transceiver pair. mD-Track also introduces novel methods to greatly streamline its estimation algorithms, achieving real-time operation. We implement mD-Track on both WARP and cheap off-the-shelf commodity Wi-Fi hardware, and evaluate its performance in different indoor environments.
214 citations
07 Sep 2015
TL;DR: In this paper, the authors present Recitation, a software system that uses lightweight channel state information (CSI) to accurately predict error-prone bit positions in a packet so that applications atop the wireless physical layer may take the best action during subsequent transmissions.
Abstract: This paper presents Recitation, the first software system that uses lightweight channel state information (CSI) to accurately predict error-prone bit positions in a packet so that applications atop the wireless physical layer may take the best action during subsequent transmissions. Our key insight is that although Wi-Fi wireless physical layer operations are complex, they are deterministic. This enables us to rehearse physical-layer operations on packet bits before they are transmitted. Based on this rehearsal, we calculate a hidden parameter in the decoding process, called error event probability (EVP). EVP captures fine-grained information about the receiver's convolutional or LDPC decoder, allowing Recitation to derive precise information about the likely fate of every bit in subsequent packets, without any wireless channel training. Recitation is the first system of its kind that is both software-implementable and compatible with the existing 802.11 architecture for both SISO and MIMO settings. We experiment with commodity Atheros 9580 Wi-Fi NICs to demonstrate Recitation's utility with three representative applications in static, mobile, and interference-dominated scenarios. We show that Recitation achieves 33.8% and 16% average throughput gains for bit-rate adaptation and partial packet recovery, respectively, and 6 dB PSNR quality improvement for unequal error protection-based video.
53 citations
03 Oct 2016
TL;DR: The design and implementation of xD-Track is described, the first practical Wi-Fi based device-free localization system that employs a simultaneous and joint estimation of time-of-flight, angle- of-arrival, angle of-departure, and Doppler shift to fully characterize the wireless channel between a sender and receiver.
Abstract: We describe the design and implementation of xD-Track, the first practical Wi-Fi based device-free localization system that employs a simultaneous and joint estimation of time-of-flight, angle-of-arrival, angle-of-departure, and Doppler shift to fully characterize the wireless channel between a sender and receiver. Using this full characterization, xD-Track introduces novel methods to measure and isolate the signal path that reflects off a person of interest, allowing it to localize a human with just a single pair of access points, or a single client-access point pair. Searching the multiple dimensions to accomplish the above is highly computationally burdensome, so xD-Track introduces novel methods to prune computational requirements, making our approach suitable for real-time person tracking. We implement xD-Track on the WARP software-defined radio platform and evaluate in a cluttered office environment. Experiments tracking people moving indoors demonstrate a 230% angle-of-arrival accuracy improvement and a 98% end-to-end tracking accuracy improvement over the state of the art localization scheme SpotFi, adapted for device-free localization. The general platform we propose can be easily extended for other applications including gesture recognition and Wi-Fi imaging to significantly improve performance.
48 citations
Cited by
More filters
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.
1,158 citations
01 Jan 2015
TL;DR: This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework and learns what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications, and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book’s practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include MATLAB computations, and the numerous end-of-chapter exercises include computational assignments. MATLAB/GNU Octave source code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.
1,102 citations
Posted Content•
TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
Abstract: What is a reconfigurable intelligent surface? What is a smart radio environment? What is a metasurface? How do metasurfaces work and how to model them? How to reconcile the mathematical theories of communication and electromagnetism? What are the most suitable uses and applications of reconfigurable intelligent surfaces in wireless networks? What are the most promising smart radio environments for wireless applications? What is the current state of research? What are the most important and challenging research issues to tackle?
These are a few of the many questions that we investigate in this short opus, which has the threefold objective of introducing the emerging research field of smart radio environments empowered by reconfigurable intelligent surfaces, putting forth the need of reconciling and reuniting C. E. Shannon's mathematical theory of communication with G. Green's and J. C. Maxwell's mathematical theories of electromagnetism, and reporting pragmatic guidelines and recipes for employing appropriate physics-based models of metasurfaces in wireless communications.
663 citations
Posted Content•
TL;DR: The fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks are elaborated.
Abstract: The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.
463 citations
TL;DR: This article describes the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays, and discusses the channel models suitable for both implementations and the feasibility of obtaining accurate channel estimates.
Abstract: Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.
459 citations