scispace - formally typeset
Search or ask a question
Author

Ye Xu

Bio: Ye Xu is an academic researcher from Beihang University. The author has contributed to research in topics: Molecular cloud & Star formation. The author has an hindex of 62, co-authored 364 publications receiving 16859 citations. Previous affiliations of Ye Xu include Louisiana State University & Rhodia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors estimate the radius to the Galactic center, R-0, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, Theta(0), to be 240 +/- 8 km s(-1), and a rotation curve that is nearly flat.
Abstract: Over 100 trigonometric parallaxes and proper motions for masers associated with young, high- mass stars have been measured with the Bar and Spiral Structure Legacy Survey, a Very Long Baseline Array key science project, the European VLBI Network, and the Japanese VLBI Exploration of Radio Astrometry project. These measurements provide strong evidence for the existence of spiral arms in the MilkyWay, accurately locating many arm segments and yielding spiral pitch angles ranging from about 7 degrees to 20 degrees. The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the MilkyWay with the three- dimensional position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, R-0, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, Theta(0), to be 240 +/- 8 km s(-1), and a rotation curve that is nearly flat ( i. e., a slope of -0.2 +/- 0.4 km s(-1) kpc(-1)) between Galactocentric radii of approximate to 5 and 16 kpc. Assuming a " universal" spiral galaxy form for the rotation curve, we estimate the thin disk scale length to be 2.44 +/- 0.16 kpc. With this large data set, the parameters R-0 and Theta(0) are no longer highly correlated and are relatively insensitive to different forms of the rotation curve. If one adopts a theoretically motivated prior that high- mass star forming regions are in nearly circular Galactic orbits, we estimate a global solar motion component in the direction of Galactic rotation, V-circle dot = 14.6 +/- 5.0 km s(-1). While Theta(0) and V-circle dot are significantly correlated, the sum of these parameters is well constrained, Theta(0) + V circle dot = 255.2 +/- 5.1 km s(-1), as is the angular speed of the Sun in its orbit about the Galactic center, ( Theta(0) + V-circle dot)/R-0 = 30.57 +/- 0.43 km s(-1) kpc(-1). These parameters improve the accuracy of estimates of the accelerations of the Sun and the Hulse-Taylor binary pulsar in their Galactic orbits, significantly reducing the uncertainty in tests of gravitational radiation predicted by general relativity.

1,334 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that for a class of catalytic reactions there is a universal, reactant independent relation between the reaction activation energy and the stability of reaction intermediates.

1,128 citations

Journal ArticleDOI
TL;DR: In this paper, it is suggested that there may be several effects contributing to the catalytic properties of supported nanosized gold particles, and that it is useful to order them in a hierarchy.

1,109 citations

Journal ArticleDOI
M. Ablikim, Z. H. An, J. Z. Bai, Niklaus Berger  +325 moreInstitutions (19)
TL;DR: In this article, the design and construction of BESIII, which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + e − collider, is discussed.
Abstract: This paper will discuss the design and construction of BESIII, which is designed to study physics in the τ -charm energy region utilizing the new high luminosity BEPCII double ring e + e − collider. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in a steel magnetic yoke for the flux return. The level 1 trigger system, data acquisition system and the detector control system based on networked computers will also be described.

733 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Abstract: We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to ...

7,711 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Abstract: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

3,314 citations