scispace - formally typeset
Search or ask a question
Author

Yea In Park

Bio: Yea In Park is an academic researcher from Yonsei University. The author has contributed to research in topics: Cell cycle checkpoint & Mdm2. The author has an hindex of 2, co-authored 2 publications receiving 9 citations.

Papers
More filters
Journal ArticleDOI
04 Mar 2021-Life
TL;DR: In this article, the authors reported that EGCG inhibits the enzymatic activity of the coronavirus 3CL protease, which is regarded as the main target of antivirals against coronaviruses.
Abstract: Epigallocatechin gallate (EGCG) is a major catechin found in green tea, and there is mounting evidence that EGCG is potentially useful for the treatment of coronavirus diseases, including coronavirus disease 2019 (COVID-19). Coronaviruses encode polyproteins that are cleaved by 3CL protease (the main protease) for maturation. Therefore, 3CL protease is regarded as the main target of antivirals against coronaviruses. EGCG is a major constituent of brewed green tea, and several studies have reported that EGCG inhibits the enzymatic activity of the coronavirus 3CL protease. Moreover, EGCG has been reported to regulate other potential targets, such as RNA-dependent RNA polymerase and the viral spike protein. Finally, recent studies have demonstrated that EGCG treatment interferes with the replication of coronavirus. In addition, the bioavailability of EGCG and future research prospects are discussed.

20 citations

Journal ArticleDOI
TL;DR: It is indicated that LNX1 contributed to tumor growth by inhibiting p53‐dependent signaling in p53 wild‐type cancer cells by down‐regulating p53 stability.
Abstract: The well-known tumor suppressor p53 inhibits the formation of various cancers by inducing cell cycle arrest and apoptosis. Although p53 mutations are commonly found in many cancers, p53 is function...

5 citations


Cited by
More filters
Journal ArticleDOI
14 Jul 2022-MedComm
TL;DR: All information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS‐CoV‐2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CL Pro inhibitors as novel anti‐coronavirus agents.
Abstract: Abstract The main proteases (Mpro), also termed 3‐chymotrypsin‐like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β‐coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus‐caused infectious diseases, including COVID‐19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS‐CoV‐2 3CLpro inhibitors. To better understand the characteristics of SARS‐CoV‐2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti‐coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS‐CoV‐2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti‐coronavirus agents.

37 citations

Journal ArticleDOI
TL;DR: This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods and recent advances to enhance E GCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are described.
Abstract: Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. PRACTICAL APPLICATIONS: The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.

17 citations

Journal ArticleDOI
13 Jul 2022-PLOS ONE
TL;DR: Epigallocatechin gallate, a polyphenol and a major component of green tea, could effectively inhibit the interaction between the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and the human cell receptor angiotensin-converting enzyme 2.
Abstract: The outbreak of the coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 triggered a global pandemic where control is needed through therapeutic and preventive interventions. This study aims to identify natural compounds that could affect the fusion between the viral membrane (receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein) and the human cell receptor angiotensin-converting enzyme 2. Accordingly, we performed the enzyme-linked immunosorbent assay-based screening of 10 phytochemicals that already showed numerous positive effects on human health in several epidemiological studies and clinical trials. Among these phytochemicals, epigallocatechin gallate, a polyphenol and a major component of green tea, could effectively inhibit the interaction between the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and the human cell receptor angiotensin-converting enzyme 2. Alternately, in silico molecular docking studies of epigallocatechin gallate and angiotensin-converting enzyme 2 indicated a binding score of −7.8 kcal/mol and identified a hydrogen bond between R393 and angiotensin-converting enzyme 2, which is considered as a key interacting residue involved in binding with the severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain, suggesting the possible blocking of interaction between receptor-binding domain and angiotensin-converting enzyme 2. Furthermore, epigallocatechin gallate could attenuate severe acute respiratory syndrome coronavirus 2 infection and replication in Caco-2 cells. These results shed insight into identification and validation of severe acute respiratory syndrome coronavirus 2 entry inhibitors.

13 citations

Journal ArticleDOI
TL;DR: Current information on the biological effects of E GCG in those respiratory diseases or animal models in which EGCG has been administered is reviewed, and effectiveness of EGCGs administration in these respiratory disorders is critically discusses.
Abstract: (-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.

11 citations

Journal ArticleDOI
TL;DR: In this article, the effects of polyphenols in prophylaxis and treatment of COVID-19, from symptomatic, via moderate and severe COVID19 treatment, to anti-fibrotic treatment in discharged patients.
Abstract: The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.

10 citations