scispace - formally typeset
Search or ask a question
Author

Yehuda Carmeli

Bio: Yehuda Carmeli is an academic researcher from Israel Ministry of Health. The author has contributed to research in topics: Klebsiella pneumoniae & Acinetobacter baumannii. The author has an hindex of 88, co-authored 351 publications receiving 37154 citations. Previous affiliations of Yehuda Carmeli include Tel Aviv University & Harvard University.


Papers
More filters
Journal ArticleDOI
Evelina Tacconelli1, Elena Carrara1, Alessia Savoldi1, Stéphan Juergen Harbarth2, Marc Mendelson3, Dominique L Monnet4, Céline Pulcini, Gunnar Kahlmeter, Jan Kluytmans5, Yehuda Carmeli6, Marc Ouellette7, Kevin Outterson8, Jean B. Patel9, Marco Cavaleri10, Edward Cox11, Christopher R. Houchens12, M Lindsay Grayson13, Paul Hansen14, Nalini Singh15, Ursula Theuretzbacher, Nicola Magrini2, Aaron O. Aboderin, Seif Al-Abri, Nordiah Awang Jalil, Nur Benzonana, Sanjay Bhattacharya, Adrian Brink, Francesco Robert Burkert, Otto Cars, Giuseppe Cornaglia, Oliver J. Dyar, Alexander W. Friedrich, Ana Cristina Gales, Sumanth Gandra, Christian G. Giske, Debra A. Goff, Herman Goossens, Thomas Gottlieb, Manuel Guzman Blanco, Waleria Hryniewicz, Deepthi Kattula, Timothy Jinks, Souha S. Kanj, Lawrence Kerr, Marie-Paule Kieny, Yang Soo Kim, Roman S. Kozlov, Jaime Labarca, Ramanan Laxminarayan, Karin Leder, Leonard Leibovici, Gabriel Levy-Hara, Jasper Littman, Surbhi Malhotra-Kumar, Vikas Manchanda, Lorenzo Moja, Babacar Ndoye, Angelo Pan, David L. Paterson, Mical Paul, Haibo Qiu, Pilar Ramon-Pardo, Jesús Rodríguez-Baño, Maurizio Sanguinetti, Sharmila Sengupta, Mike Sharland, Massinissa Si-Mehand, Lynn L. Silver, Wonkeung Song, Martin Steinbakk, Jens Thomsen, Guy E. Thwaites, Jos W. M. van der Meer, Nguyen Van Kinh, Silvio Vega, Maria Virginia Villegas, Agnes Wechsler-Fördös, Heiman F. L. Wertheim, Evelyn Wesangula, Neil Woodford, Fidan O Yilmaz, Anna Zorzet 
TL;DR: Future development strategies should focus on antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria, and include antibiotic-resistant bacteria responsible for community-acquired infections.
Abstract: Summary Background The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs. Methods We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria. Findings We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa , and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus . Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori , and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae , and Salmonella typhi were included in the high-priority tier. Interpretation Future development strategies should focus on antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria. The global strategy should include antibiotic-resistant bacteria responsible for community-acquired infections such as Salmonella spp, Campylobacter spp, N gonorrhoeae , and H pylori . Funding World Health Organization.

3,184 citations

Journal ArticleDOI
TL;DR: A meta-analysis was performed to summarize the impact of methicillin-resistance on mortality in Staphylococcus aureus bacteremia and explored the reasons for heterogeneity by means of subgroup analyses.
Abstract: A meta-analysis was performed to summarize the impact of methicillin-resistance on mortality in Staphylococcus aureus bacteremia. A search of the MEDLINE database for studies published during the period of 1 January 1980 through 31 December 2000 and a bibliographic review identified English-language studies of S. aureus bacteremia. Studies were included if they contained the numbers of and mortality rates for patients with methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) bacteremia. Data were extracted on demographic characteristics of the patients, adjustment for severity and comorbid illness, source of bacteremia, and crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for in-hospital mortality. When the results were pooled with a random-effects model, a significant increase in mortality associated with MRSA bacteremia was evident (OR, 1.93; 95% CI, 1.54-2.42; P<.001); significant heterogeneity was present. We explored the reasons for heterogeneity by means of subgroup analyses. MRSA bacteremia is associated with significantly higher mortality rate than is MSSA bacteremia.

2,008 citations

Journal ArticleDOI
TL;DR: Methicillin resistance is independently associated with increased mortality and hospital charges among patients with S. aureus SSI and has a greater duration of hospitalization after infection.
Abstract: Data for 479 patients were analyzed to assess the impact of methicillin resistance on the outcomes of patients with Staphylococcus aureus surgical site infections (SSIs). Patients infected with methicillin-resistant S. aureus (MRSA) had a greater 90-day mortality rate than did patients infected with methicillin-susceptible S. aureus (MSSA; adjusted odds ratio, 3.4; 95% confidence interval, 1.5-7.2). Patients infected with MRSA had a greater duration of hospitalization after infection (median additional days, 5; P<.001), although this was not significant on multivariate analysis (P=.11). Median hospital charges were 29,455 dollars for control subjects, 52,791 dollars for patients with MSSA SSI, and 92,363 dollars for patients with MRSA SSI (P<.001 for all group comparisons). Patients with MRSA SSI had a 1.19-fold increase in hospital charges (P=.03) and had mean attributable excess charges of 13,901 dollars per SSI compared with patients who had MSSA SSIs. Methicillin resistance is independently associated with increased mortality and hospital charges among patients with S. aureus SSI.

949 citations

Journal ArticleDOI
TL;DR: Evaluating the impact of methicillin resistance in S. aureus bacteremia in patients admitted to the hospital between July 1, 1997, and June 1, 2000 found it was associated with significant increases in length of hospitalization and hospital charges.
Abstract: OBJECTIVE To evaluate the impact of methicillin resistance in Staphylococcus aureus on mortality, length of hospitalization, and hospital charges. DESIGN A cohort study of patients admitted to the hospital between July 1, 1997, and June 1, 2000, who had clinically significant S. aureus bloodstream infections. SETTING A 630-bed, urban, tertiary-care teaching hospital in Boston, Massachusetts. PATIENTS Three hundred forty-eight patients with S. aureus bacteremia were studied; 96 patients had methicillin-resistant S. aureus (MRSA). Patients with methicillin-susceptible S. aureus (MSSA) and MRSA were similar regarding gender, percentage of nosocomial acquisition, length of hospitalization, ICU admission, and surgery before S. aureus bacteremia. They differed regarding age, comorbidities, and illness severity score. RESULTS Similar numbers of MRSA and MSSA patients died (22.9% vs 19.8%; P = .53). Both the median length of hospitalization after S. aureus bacteremia for patients who survived and the median hospital charges after S. aureus bacteremia were significantly increased in MRSA patients (7 vs 9 days, P = .045; 19,212 dollars vs 26,424 dollars, P = .008). After multivariable analysis, compared with MSSA bacteremia, MRSA bacteremia remained associated with increased length of hospitalization (1.29 fold; P = .016) and hospital charges (1.36 fold; P = .017). MRSA bacteremia had a median attributable length of stay of 2 days and a median attributable hospital charge of 6916 dollars. CONCLUSION Methicillin resistance in S. aureus bacteremia is associated with significant increases in length of hospitalization and hospital charges.

948 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Book
01 May 1988
TL;DR: A comprehensive review of mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed.
Abstract: Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.

4,580 citations

Journal ArticleDOI
TL;DR: An update on potentially effective antibacterial drugs in the late-stage development pipeline is provided, in the hope of encouraging collaboration between industry, academia, the National Institutes of Health, the Food and Drug Administration, and the Centers for Disease Control and Prevention work productively together.
Abstract: The Infectious Diseases Society of America (IDSA) continues to view with concern the lean pipeline for novel therapeutics to treat drug-resistant infections, especially those caused by gram-negative pathogens. Infections now occur that are resistant to all current antibacterial options. Although the IDSA is encouraged by the prospect of success for some agents currently in preclinical development, there is an urgent, immediate need for new agents with activity against these panresistant organisms. There is no evidence that this need will be met in the foreseeable future. Furthermore, we remain concerned that the infrastructure for discovering and developing new antibacterials continues to stagnate, thereby risking the future pipeline of antibacterial drugs. The IDSA proposed solutions in its 2004 policy report, “Bad Bugs, No Drugs: As Antibiotic R&D Stagnates, a Public Health Crisis Brews,” and recently issued a “Call to Action” to provide an update on the scope of the problem and the proposed solutions. A primary objective of these periodic reports is to encourage a community and legislative response to establish greater financial parity between the antimicrobial development and the development of other drugs. Although recent actions of the Food and Drug Administration and the 110th US Congress present a glimmer of hope, significant uncertainly remains. Now, more than ever, it is essential to create a robust and sustainable antibacterial research and development infrastructure—one that can respond to current antibacterial resistance now and anticipate evolving resistance. This challenge requires that industry, academia, the National Institutes of Health, the Food and Drug Administration, the Centers for Disease Control and Prevention, the US Department of Defense, and the new Biomedical Advanced Research and Development Authority at the Department of Health and Human Services work productively together. This report provides an update on potentially effective antibacterial drugs in the late-stage development pipeline, in the hope of encouraging such collaborative action.

4,256 citations

Journal ArticleDOI
17 Oct 2007-JAMA
TL;DR: Invasive MRSA infection affects certain populations disproportionately and is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.
Abstract: ContextAs the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed.ObjectivesTo describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005.Design and SettingActive, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care–associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA).Main Outcome MeasuresIncidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains.ResultsThere were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care–associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100 000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100 000; interval estimate, 92.6-156.9), blacks (66.5 per 100 000; interval estimate, 43.5-63.1), and males (37.5 per 100 000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100 000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care–associated infections in all surveillance areas.ConclusionsInvasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.

3,803 citations