scispace - formally typeset
Search or ask a question
Author

Yeong-Shiau Pu

Bio: Yeong-Shiau Pu is an academic researcher from National Taiwan University. The author has contributed to research in topics: Prostate cancer & Bladder cancer. The author has an hindex of 40, co-authored 254 publications receiving 8465 citations. Previous affiliations of Yeong-Shiau Pu include National Institutes of Health & Taipei Medical University.


Papers
More filters
Journal Article
TL;DR: It is demonstrated that curcumin is not toxic to humans up to 8,000 mg/day when taken by mouth for 3 months and a biologic effect ofCurcumin in the chemoprevention of cancer is suggested.
Abstract: Curcumin (diferuloylmethane), a yellow substance from the root of the plant Curcuma longa Linn., has been demonstrated to inhibit carcinogenesis of murine skin, stomach, intestine and liver. However, the toxicology, pharmacokinetics and biologically effective dose of curcumin in humans have not been reported. This prospective phase-I study evaluated these issues of curcumin in patients with one of the following five high-risk conditions: 1) recently resected urinary bladder cancer; 2) arsenic Bowen's disease of the skin; 3) uterine cervical intraepithelial neoplasm (CIN); 4) oral leucoplakia; and 5) intestinal metaplasia of the stomach. Curcumin was taken orally for 3 months. Biopsy of the lesion sites was done immediately before and 3 months after starting curcumin treament. The starting dose was 500 mg/day. If no toxicity > or = grade II was noted in at least 3 successive patients, the dose was then escalated to another level in the order of 1,000, 2,000, 4,000, 8,000, and 12,000 mg/day. The concentration of curcumin in serum and urine was determined by high pressure liquid chromatography (HPLC). A total of 25 patients were enrolled in this study. There was no treatment-related toxicity up to 8,000 mg/day. Beyond 8,000 mg/day, the bulky volume of the drug was unacceptable to the patients. The serum concentration of curcumin usually peaked at 1 to 2 hours after oral intake of crucumin and gradually declined within 12 hours. The average peak serum concentrations after taking 4,000 mg, 6,000 mg and 8,000 mg of curcumin were 0.51 +/- 0.11 microM, 0.63 +/- 0.06 microM and 1.77 +/- 1.87 microM, respectively. Urinary excretion of curcumin was undetectable. One of 4 patients with CIN and 1 of 7 patients with oral leucoplakia proceeded to develop frank malignancies in spite of curcumin treatment. In contrast, histologic improvement of precancerous lesions was seen in 1 out of 2 patients with recently resected bladder cancer, 2 out of 7 patients of oral leucoplakia, 1 out of 6 patients of intestinal metaplasia of the stomach, I out of 4 patients with CIN and 2 out of 6 patients with Bowen's disease. In conclusion, this study demonstrated that curcumin is not toxic to humans up to 8,000 mg/day when taken by mouth for 3 months. Our results also suggest a biologic effect of curcumin in the chemoprevention of cancer.

1,935 citations

Journal Article
TL;DR: A dose-response relationship was observed between the long-term arsenic exposure from drinking artesian well water and the incidence of lung cancer, bladder cancer, and cancers of all sites combined after adjustment for age, sex, and cigarette smoking through Cox's proportional hazards regression analysis.
Abstract: In order to elucidate the dose-response relationship between ingested inorganic arsenic and internal cancers, a total of 263 patients with blackfoot disease and 2293 healthy residents in the endemic area of arseniasis were recruited and followed up for 7 years. The information on consumption of high-arsenic artesian well water, sociodemographic characteristics, life-style and dietary habits, and personal and family history of cancers was obtained through standardized interviews. The occurrence of internal cancers among study subjects was determined through annual health examinations, home visit personal interviews, household registration data checks, and national death certification and cancer registry profile linkages. A dose-response relationship was observed between the long-term arsenic exposure from drinking artesian well water and the incidence of lung cancer, bladder cancer, and cancers of all sites combined after adjustment for age, sex, and cigarette smoking through Cox's proportional hazards regression analysis. Blackfoot disease patients had a significantly increased cancer incidence after adjustment for cumulative arsenic exposure.

445 citations

Journal ArticleDOI
TL;DR: It is concluded that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health.
Abstract: Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of 5′AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health.

347 citations

Journal ArticleDOI
TL;DR: The results suggest that paclitaxel chemosensitivity may be predicted by taking total antioxidant capacity measurements from clinical tumor samples, which may then improve treatment outcomes by selecting out potentially responsive patients.
Abstract: Paclitaxel, one of the most commonly prescribed chemotherapeutic agents, is active against a wide spectrum of human cancer. The mechanism of its cytotoxicity, however, remains controversial. Our results indicate that paclitaxel treatment increases levels of superoxide, hydrogen peroxide, nitric oxide (NO), oxidative DNA adducts, G2-M arrest, and cells with fragmented nuclei. Antioxidants pyruvate and selenium, the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester, and the NO scavenger manganese (III) 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide all decreased paclitaxel-mediated DNA damage and sub-G1 cells. In contrast, the glutamylcysteine synthase inhibitor buthionine sulfoximine (BSO) and the superoxide dismutase (SOD) inhibitor 2-methoxyestradiol (2-ME) increased the sub-G1 fraction in paclitaxel-treated cells. These results suggest that reactive oxygen and nitrogen species are involved in paclitaxel cytotoxicity. This notion is further supported with the observation that concentrations of paclitaxel required to inhibit cell growth by 50% correlate with total antioxidant capacity. Moreover, agents such as arsenic trioxide (As2O3), BSO, 2-ME, PD98059, U0126 [mitogen-activated protein/extracellular signal-regulated kinase inhibitors], and LY294002 (phosphatidylinositol 3-kinase/Akt inhibitor), all of which decrease clonogenic survival, also decrease the total antioxidant capacity of paclitaxel-treated cells, regardless whether they are paclitaxel sensitive or paclitaxel resistant. These results suggest that paclitaxel chemosensitivity may be predicted by taking total antioxidant capacity measurements from clinical tumor samples. This, in turn, may then improve treatment outcomes by selecting out potentially responsive patients.

270 citations

Journal ArticleDOI
TL;DR: A “molecular signature” of AA-induced DNA damage is presented, which helps to explain the mutagenic effects of AA and may also be useful as a way to detect unsuspected AA exposure as a cause of cancer.
Abstract: In humans, exposure to aristolochic acid (AA) is associated with urothelial carcinoma of the upper urinary tract (UTUC). Exome sequencing of UTUCs from 19 individuals with documented exposure to AA revealed a remarkably large number of somatic mutations and an unusual mutational signature attributable to AA. Most of the mutations (72%) in these tumors were A:T-to-T:A transversions, located predominantly on the nontranscribed strand, with a strong preference for deoxyadenosine in a consensus sequence (T/CAG). This trinucleotide motif overlaps the canonical splice acceptor site, possibly accounting for the excess of splice site mutations observed in these tumors. The AA mutational fingerprint was found frequently in oncogenes and tumor suppressor genes in AA-associated UTUC. The AA mutational signature was observed in one patient's tumor from a UTUC cohort without previous indication of AA exposure. Together, these results directly link an established environmental mutagen to cancer through genome-wide sequencing and highlight its power to reveal individual exposure to carcinogens.

223 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
Abstract: Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.

4,369 citations

Journal ArticleDOI
TL;DR: Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
Abstract: Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of...

4,275 citations

Journal Article
TL;DR: Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis, and Pharmacologically,Curcumin has been found to be safe.
Abstract: Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF- κB, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. Curcumin, derived from turmeric (vernacular name: Haldi), is a rhizome of the plant Curcuma longa. The medicinal use of this plant has been documented in Ayurveda (the Indian

2,453 citations

Journal ArticleDOI
TL;DR: It is suggested that low dose curcumin effectively disaggregates Aβ as well as prevents fibril and oligomer formation, supporting the rationale forCurcumin use in clinical trials preventing or treating AD.

2,140 citations

Journal ArticleDOI
TL;DR: Safety continues to be a major issue with the use of herbal remedies and it becomes imperative, therefore, that relevant regulatory authorities put in place appropriate measures to protect public health by ensuring that all herbal medicines are safe and of suitable quality.
Abstract: The use of herbal medicinal products and supplements has increased tremendously over the past three decades with not less than 80% of people worldwide relying on them for some part of primary health care. Although therapies involving these agents have shown promising potential with the efficacy of a good number of herbal products clearly established, many of them remain untested and their use are either poorly monitored or not even monitored at all. The consequence of this is an inadequate knowledge of their mode of action, potential adverse reactions, contraindications and interactions with existing orthodox pharmaceuticals and functional foods to promote both safe and rational use of these agents. Since safety continues to be a major issue with the use of herbal remedies, it becomes imperative, therefore, that relevant regulatory authorities put in place appropriate measures to protect public health by ensuring that all herbal medicines are safe and of suitable quality. This review discusses toxicity related-issues and major safety concerns arising from the use of herbal medicinal products and also highlights some important challenges associated with effective monitoring of their safety.

2,007 citations