scispace - formally typeset
Search or ask a question
Author

Yi Bi

Bio: Yi Bi is an academic researcher from Yantai University. The author has contributed to research in topics: Antibacterial activity & Fusidic acid. The author has an hindex of 11, co-authored 34 publications receiving 410 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: H6 is a novel and potent MDR reversal agent, which has the potential to be administered in combination with conventional anticancer drugs and demonstrates robust reversal activity against MDR in vitro and in vivo.

75 citations

Journal ArticleDOI
TL;DR: Cellular mechanism studies elucidated that 34b disrupted cell microtubule networks, arrested the cell cycle at G2/M phase, induced apoptosis and depolarized mitochondria of K562 cells, suggesting that 27c and 34b deserve further research as potent antitumor agents for cancer therapy.

52 citations

Journal ArticleDOI
TL;DR: Compound 16f significantly inhibited tumor growth in H22 xenograft models without apparent toxicity, which was stronger than the reference compound CA-4, indicating that it is worthy to investigate 16f as a potent microtubule-destabilizing agent for cancer therapy.

38 citations

Journal ArticleDOI
TL;DR: A novel class of ocotillol-type triterpenoid derivatives have been synthesized and evaluated for their in-vitro antibacterial activity against several representative pathogenic bacterial strains.

36 citations

Journal ArticleDOI
TL;DR: A consensus model based on the predicted values of individual LLL models of LD50 is developed, yielding correlation coefficients R2 of 0.712 on a test set containing 2,896 compounds.
Abstract: Background Acute toxicity means the ability of a substance to cause adverse effects within a short period following dosing or exposure, which is usually the first step in the toxicological investigations of unknown substances. The median lethal dose, LD50, is frequently used as a general indicator of a substance’s acute toxicity, and there is a high demand on developing non-animal-based prediction of LD50. Unfortunately, it is difficult to accurately predict compound LD50 using a single QSAR model, because the acute toxicity may involve complex mechanisms and multiple biochemical processes.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review highlights the trends in the use of nitrogen-based moieties in drug design and the development of different potent and competent candidates against various diseases.
Abstract: The analogs of nitrogen-based heterocycles occupy an exclusive position as a valuable source of therapeutic agents in medicinal chemistry. More than 75% of drugs approved by the FDA and currently available in the market are nitrogen-containing heterocyclic moieties. In the forthcoming decade, a much greater share of new nitrogen-based pharmaceuticals is anticipated. Many new nitrogen-based heterocycles have been designed. The number of novel N-heterocyclic moieties with significant physiological properties and promising applications in medicinal chemistry is ever-growing. In this review, we consolidate the recent advances on novel nitrogen-containing heterocycles and their distinct biological activities, reported over the past one year (2019 to early 2020). This review highlights the trends in the use of nitrogen-based moieties in drug design and the development of different potent and competent candidates against various diseases.

587 citations

Journal ArticleDOI
TL;DR: Computational approaches are reviewed and highlighted their characteristics to provide references for researchers to develop more powerful approaches and to summarized 76 important resources about drug repositioning.
Abstract: Drug discovery is a time-consuming, high-investment, and high-risk process in traditional drug development. Drug repositioning has become a popular strategy in recent years. Different from traditional drug development strategies, the strategy is efficient, economical and riskless. There are usually three kinds of approaches: computational approaches, biological experimental approaches, and mixed approaches, all of which are widely used in drug repositioning. In this paper, we reviewed computational approaches and highlighted their characteristics to provide references for researchers to develop more powerful approaches. At the same time, the important findings obtained using these approaches are listed. Furthermore, we summarized 76 important resources about drug repositioning. Finally, challenges and opportunities in drug repositioning are discussed from multiple perspectives, including technology, commercial models, patents and investment.

407 citations

Journal ArticleDOI
TL;DR: The development of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models are introduced.
Abstract: In recent decades, in silico absorption, distribution, metabolism, excretion (ADME), and toxicity (T) modelling as a tool for rational drug design has received considerable attention from pharmaceutical scientists, and various ADME/T-related prediction models have been reported. The high-throughput and low-cost nature of these models permits a more streamlined drug development process in which the identification of hits or their structural optimization can be guided based on a parallel investigation of bioavailability and safety, along with activity. However, the effectiveness of these tools is highly dependent on their capacity to cope with needs at different stages, e.g. their use in candidate selection has been limited due to their lack of the required predictability. For some events or endpoints involving more complex mechanisms, the current in silico approaches still need further improvement. In this review, we will briefly introduce the development of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models. Finally, the outlook for future ADME/T modelling based on big data analysis and systems sciences will be discussed.

198 citations

Journal ArticleDOI
TL;DR: Gas‐generating nanoplplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies by either exogenous physical triggers or endogenous disease‐environment responsiveness, and have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use.
Abstract: The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.

193 citations