scispace - formally typeset
Search or ask a question
Author

Yi Chen

Bio: Yi Chen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Large Hadron Collider & Medicine. The author has an hindex of 217, co-authored 4342 publications receiving 293080 citations. Previous affiliations of Yi Chen include Rochester Institute of Technology & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
06 Jun 2012
TL;DR: In this article, the dijet momentum balance and angular correlations are studied as a function of collision centrality and leading jet transverse momentum for PbPb collisions at a nucleon-nucleon center-of-mass energy of 276 TeV.
Abstract: Dijet production in PbPb collisions at a nucleon–nucleon center-of-mass energy of 276 TeV is studied with the CMS detector at the LHC A data sample corresponding to an integrated luminosity of 150 μb−1 is analyzed Jets are reconstructed using combined information from tracking and calorimetry, using the anti-kT algorithm with R=03 The dijet momentum balance and angular correlations are studied as a function of collision centrality and leading jet transverse momentum For the most peripheral PbPb collisions, good agreement of the dijet momentum balance distributions with pp data and reference calculations at the same collision energy is found, while more central collisions show a strong imbalance of leading and subleading jet transverse momenta attributed to the jet-quenching effect The dijets in central collisions are found to be more unbalanced than the reference, for leading jet transverse momenta up to the highest values studied

255 citations

Journal ArticleDOI
01 Sep 2004-Langmuir
TL;DR: Electrochemical studies indicate that the LBL assembled MWNT films possess a remarkable electrocatalytic activity toward O2 reduction in alkaline media, which suggests the potential application of the MWNT film for constructing an efficient alkaline air electrode for energy conversions.
Abstract: Multilayer films of shortened multiwalled carbon nanotubes (MWNTs) are homogeneously and stably assembled on glassy carbon electrodes with the layer-by-layer (LBL) method, based on electrostatic interaction of positively charged poly(diallyldimethylammonium chloride) and negatively charged and shortened MWNTs. The film assembly and electrochemical property as well as the electrocatalytic activity toward O2 reduction of the MWNT multilayer film are studied. Scanning electron microscopy, the quartz crystal microbalance technique, ultraviolet-visible-near-infrared spectroscopy, and cyclic voltammetry are used for characterization of film assembly. Experimental results revealed that film growth is uniform, almost with the same coverage of the MWNTs in each layer, and that the assembled MWNTs are mainly in the form of small bundles or single tubes on the electrodes. Electrochemical studies indicate that the LBL assembled MWNT films possess a remarkable electrocatalytic activity toward O2 reduction in alkaline media. This property, combined with the well-dispersed, porous and conductive features of the MWNT film illustrated with the LBL method, suggests the potential application of the MWNT film for constructing an efficient alkaline air electrode for energy conversions.

253 citations

Journal ArticleDOI
TL;DR: It is demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls and an increase of apoptotic signals was detected inside tumors in the combined treatment group.
Abstract: High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P = 0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P < 0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P < 0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (Cancer Sci 2008; 99: 1479–1484)

252 citations

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison1, Samuel Webb1  +2926 moreInstitutions (62)
TL;DR: In this paper, the properties of the Higgs boson were measured in the two-photon final state using 36.1 fb-1 of proton? proton collision data recorded at ffiffi √s = 13 TeV by the ATLAS experiment at the Large Hadron Collider.
Abstract: Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb-1 of proton? proton collision data recorded at ffiffi √s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vectorboson fusion, and in association with a vector boson or a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of 0.99 ± 0.14 improves on the precision of the ATLAS measurement at √s = 7 and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be 55 ± 10 fb, which is in good agreement with the Standard Model prediction of 64 ± 2 fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. These differential cross sections are sensitive to higher order QCD corrections and properties of the Higgs boson, such as its spin and CP quantum numbers. No significant deviations from a wide array of Standard Model predictions are observed. Finally, the strength and tensor structure of the Higgs boson interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions. No significant new physics contributions are observed.

251 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2240 moreInstitutions (157)
TL;DR: In this article, a measurement of the H→ττ signal strength is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV.

250 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The Kyoto Encyclopedia of Genes and Genomes (KEGG) as discussed by the authors is a knowledge base for systematic analysis of gene functions in terms of the networks of genes and molecules.
Abstract: Kyoto Encyclopedia of Genes and Genomes (KEGG) is a knowledge base for systematic analysis of gene functions in terms of the networks of genes and molecules. The major component of KEGG is the PATHWAY database that consists of graphical diagrams of biochemical pathways including most of the known metabolic pathways and some of the known regulatory pathways. The pathway information is also represented by the ortholog group tables summarizing orthologous and paralogous gene groups among different organisms. KEGG maintains the GENES database for the gene catalogs of all organisms with complete genomes and selected organisms with partial genomes, which are continuously re-annotated, as well as the LIGAND database for chemical compounds and enzymes. Each gene catalog is associated with the graphical genome map for chromosomal locations that is represented by Java applet. In addition to the data collection efforts, KEGG develops and provides various computational tools, such as for reconstructing biochemical pathways from the complete genome sequence and for predicting gene regulatory networks from the gene expression profiles. The KEGG databases are daily updated and made freely available (http://www.genome.ad.jp/kegg/).

24,024 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
TL;DR: Atherosclerosis is an inflammatory disease as discussed by the authors, and it is a major cause of death in the United States, Europe, and much of Asia, despite changes in lifestyle and use of new pharmacologic approaches to lower plasma cholesterol concentrations.
Abstract: Atherosclerosis is an inflammatory disease. Because high plasma concentrations of cholesterol, in particular those of low-density lipoprotein (LDL) cholesterol, are one of the principal risk factors for atherosclerosis,1 the process of atherogenesis has been considered by many to consist largely of the accumulation of lipids within the artery wall; however, it is much more than that. Despite changes in lifestyle and the use of new pharmacologic approaches to lower plasma cholesterol concentrations,2,3 cardiovascular disease continues to be the principal cause of death in the United States, Europe, and much of Asia.4,5 In fact, the lesions of atherosclerosis represent . . .

19,881 citations