scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: FliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.
Abstract: Quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.

26 citations

Journal ArticleDOI
TL;DR: It is the expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis.
Abstract: Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity To obtain quantitative information (eg, molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis

26 citations

Journal ArticleDOI
24 Aug 2020
TL;DR: It is clarified that a HoMS-based electrode is indispensable to realize a practically high energy density in addition to lengthening the cycling lifespan and guide the future development of HoMSs to further improve the performance of rechargeable batteries.
Abstract: Hollow structures have been shown to be fruitful in addressing the cycling-stability problem of high-capacity electrode materials. However, we have noticed that there exist misconceptions toward the energy density of hollow-structured electrodes. In this Focus Article, the indispensability of hollow structures for stable high energy density batteries is discussed. Additionally, the merits of hollow multishelled structures (HoMSs) superior to their single-shelled counterparts mainly including optimizing the volumetric energy density, improving the mechanical robustness and enabling smart safe energy-storage behaviors have also been highlighted. The goal of the current article is to clarify that a HoMS-based electrode is indispensable to realize a practically high energy density in addition to lengthening the cycling lifespan and guide the future development of HoMSs to further improve the performance of rechargeable batteries.

26 citations

Patent
23 Mar 2011
TL;DR: An electrode for use in a microbial fuel cell comprising a porous substrate and nanostructure coating, for example, a carbon nanotube coating, is provided in this article, where the electrode can be configured as either a cathode or an anode, or both.
Abstract: An electrode for use in a microbial fuel cell comprising a porous substrate and nanostructure coating, for example, a carbon nanotube coating, is provided. The electrode can be configured as either a cathode or an anode, or both. Also provided is a microbial fuel cell comprising an anode compartment comprising an anode and a cathode compartment comprising a cathode and a metallic catalyst, wherein at least one of the anode and cathode comprises the porous substrate conformally coated with the nanostructure coating, and the cathode and anode are electrically connected. Methods for generating an electrical current with marine sediment or wastewater with the microbial fuel cell are also described.

26 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations