scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: A di-block nano-vector based on poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) for stabilization of conjugated Azacitidine (AZA) under physiological conditions was developed in this paper.

21 citations

Journal ArticleDOI
TL;DR: In this paper, a linear voltage sweep method was used to measure anodic (oxidization) current of polysulfide crossed separators, which can be used as a quantitative measurement of the transport.

21 citations

Journal ArticleDOI
TL;DR: This work synthesizes small lanthanide-doped nanoparticles and measures the absolute photon emission rate of individual nanoparticles resulting from a given electron excitation flux (cathodoluminescence) to suggest that the optimization of nanoparticle composition, synthesis protocols and electron imaging conditions can lead to sub-20-nm nanolabels that would enable high signal-to-noise localization of individual biomolecules within a cellular context.
Abstract: Electron microscopy (EM) has been instrumental in our understanding of biological systems ranging from subcellular structures to complex organisms. Although EM reveals cellular morphology with nanoscale resolution, it does not provide information on the location of proteins within a cellular context. An EM-based bioimaging technology capable of localizing individual proteins and resolving protein-protein interactions with respect to cellular ultrastructure would provide important insights into the molecular biology of a cell. Here, we report on the development of luminescent nanoprobes potentially suitable for labeling biomolecules in a multicolor EM modality. In this approach, the labels are based on lanthanide-doped nanoparticles that emit light under electron excitation in a process known as cathodoluminescence (CL). Our results suggest that the optimization of nanoparticle composition, synthesis protocols and electron imaging conditions could enable high signal-to-noise localization of biomolecules with a sub-20-nm resolution, limited only by the nanoparticle size. In ensemble measurements, these luminescent labels exhibit narrow spectra of nine distinct colors that are characteristic of the corresponding rare-earth dopant type.

21 citations

Journal ArticleDOI
TL;DR: In this article, the methylene blue photochemical treatment was used to inactivate coronaviruses on three N95 filtering facepiece respirator (FFR) and two medical mask (MM) models.
Abstract: OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE) underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate SARS-CoV-2-exposed masks and respirators. We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. DESIGN: The two arms of the study included: 1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment, and 2) PPE treatment with MBL for 5 cycles of decontamination (5CD) to determine maintenance of PPE performance. METHODS: MBL treatment was used to inactivate coronaviruses on three N95 filtering facepiece respirator (FFR) and two medical mask (MM) models. We inoculated FFR and MM materials with three coronaviruses, including SARS-CoV-2, and treated with 10 µM MB and exposed to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5CD using multiple US and international test methods and compared to the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. RESULTS: Overall, MBL robustly and consistently inactivated all three coronaviruses with 99.8 - to >99.9% virus inactivation across all FFRs and MMs tested. FFR and MM integrity was maintained after 5 cycles of MBL treatment, whereas one FFR model failed after 5 cycles of VHP+O3. CONCLUSIONS: MBL treatment decontaminated respirators and masks by inactivating three tested coronaviruses without compromising integrity through 5CD. MBL decontamination is effective, low-cost and does not require specialized equipment, making it applicable in all-resource settings.

21 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations