scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Proceedings ArticleDOI
10 Jul 2016
TL;DR: This paper presents model-based scattering power decomposition images acquired with Advanced Land Observing Satellite 2 (ALOS-2) operating at the L-band frequency, and shows how real applications on the environmental monitoring such as forest change, flooding, volcano investigation, etc, became feasible.
Abstract: This paper presents model-based scattering power decomposition images acquired with Advanced Land Observing Satellite 2 (ALOS-2) operating at the L-band frequency. Using the advantages of penetrating and fully polarimetric capabilities in the L-band, real applications on the environmental monitoring such as forest change, flooding, volcano investigation, etc, became feasible. Some evident images are shown in this paper using the existing model-based scattering power decomposition.

2 citations

Patent
29 Apr 2016
TL;DR: In this paper, a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the resonant element and below a top surface of the resonants such that the dielectrics resonant items protrude through the metal film was presented.
Abstract: An optoelectronic device has a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the dielectric resonant elements and below a top surface of the resonant elements such that the dielectric resonant elements protrude through the metal film. The device may also include an anti-reflection coating. The device may further include a metal film layer on each of the dielectric resonant elements.

2 citations

Patent
28 Oct 2010
TL;DR: In this article, the authors implemented a rechargeable battery with a cathode that has lithiated sulfur and a porous structure having pores containing the lithium-sulfide particles introduced during the manufacturing stage of the battery.
Abstract: Methods, systems and devices are implemented in connection with rechargeable batteries. One such device includes a cathode that has lithiated sulfur. The device also includes a porous structure having pores containing the lithium-sulfide particles introduced during a manufacturing stage thereof.

2 citations

Journal ArticleDOI
TL;DR: Based on the special reaction mechanism of Li-S batteries, the authors summarizes in detail the GPE types for different key problems existing in cathodes and anodes, and discusses their corresponding action mechanisms and improvement methods.
Abstract: Lithium-sulfur (Li-S) batteries, known for its high energy density, are limited in practical application by lithium dendrite growth, polysulfide "shuttle effect", and safety issues. Gel polymer electrolytes that combine high ionic conductivity and safety are the key to solving these problems. Based on the special reaction mechanism of Li-S batteries, this paper summarizes in detail the GPE types for different key problems existing in cathodes and anodes, and discusses their corresponding action mechanisms and improvement methods. Finally, the current challenges and future development direction of GPEs for Li-S batteries are summarized and prospected.

2 citations

Journal ArticleDOI
TL;DR: In this article , a thermally modulated current collector (TMCC) is proposed for all-solid-state batteries (ASSBs), which can rapidly cold start ASSBs from room temperature to operating temperatures (70-90 °C) in less than 1 min, and simultaneously enhance the transient peak power density by 15-fold compared to one without heating.
Abstract: All‐solid‐state batteries (ASSBs) show great potential as high‐energy and high‐power energy‐storage devices but their attainable energy/power density at room temperature is severely reduced because of the sluggish kinetics of lithium‐ion transport. Here a thermally modulated current collector (TMCC) is reported, which can rapidly cold‐start ASSBs from room temperature to operating temperatures (70–90 °C) in less than 1 min, and simultaneously enhance the transient peak power density by 15‐fold compared to one without heating. This TMCC is prepared by integrating a uniform, ultrathin (≈200 nm) nickel layer as a thermal modulator within an ultralight polymer‐based current collector. By isolating the thermal modulator from the ion/electron pathway of ASSBs, it can provide fast, stable heat control yet does not interfere with regular battery operation. Moreover, this ultrathin (13.2 µm) TMCC effectively shortens the heat‐transfer pathway, minimizes heat losses, and mitigates the formation of local hot spots. The simulated heating energy consumption can be as low as ≈3.94% of the total battery energy. This TMCC design with good tunability opens new frontiers toward smart energy‐storage devices in the future from the current collector perspective.

2 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations