scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
25 Nov 2016-Science
TL;DR: A method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR) is reported.
Abstract: We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. We observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.

457 citations

Journal ArticleDOI
TL;DR: In this paper, air-stable, non-encapsulated Bi2O2Se ultrathin films grown by chemical vapour deposition display high electron mobility and exceptional semiconducting transport properties.
Abstract: Air-stable, non-encapsulated Bi2O2Se ultrathin films grown by chemical vapour deposition display high electron mobility and exceptional semiconducting transport properties, making the observation of quantum oscillations possible and suggesting potential applications in electronics.

456 citations

Journal ArticleDOI
TL;DR: It is shown that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass.
Abstract: The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 12 × 10(8) tons/year, with a conversion yield as high as 5% by mass And owing to their small size (10-40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g(-1), seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles) Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible

452 citations

Journal ArticleDOI
TL;DR: A bifunctional separator modified by black-phosphorus nanoflakes is prepared to overcome the challenges associated with the polysulfide diffusion in lithium-sulfur batteries.
Abstract: A bifunctional separator modified by black-phosphorus nanoflakes is prepared to overcome the challenges associated with the polysulfide diffusion in lithium-sulfur batteries. It brings the benefits of the entrapment of various sulfur species via the strong binding energy and re-activation of the trapped sulfur species due to its high electron conductivity as well as Li-ion diffusivity.

442 citations

Journal ArticleDOI
TL;DR: Galvanostatic battery testing showed that LiMn(2)O(4) nanowires deliver 100 and 78 mAh/g at very high rate (60C and 150C, respectively) in a larger potential window with very good capacity retention and outstanding structural stability.
Abstract: Ultrathin LiMn2O4 nanowires with cubic spinel structure were synthesized by using a solvothermal reaction to produce R-MnO2 nanowire followed by solid-state lithiation. LiMn2O4 nanowires have diameters less than 10 nm and lengths of several micrometers. Galvanostatic battery testing showed that LiMn2O4 nanowires deliver 100 and 78 mAh/g at very high rate (60C and 150C, respectively) in a larger potential window with very good capacity retention and outstanding structural stability. Such performances are due to both the favorable morphology and the high crystallinity of nanowires.

440 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations