scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
01 Mar 2021
TL;DR: In this article, the authors demonstrate that Cu single atoms incorporated in graphitic carbon nitride can catalytically activate H2O2 to generate hydroxyl radicals at pH 7.0 without energy input.
Abstract: The presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although advanced oxidation processes that rely on highly reactive radicals to destroy organic contaminants are appealing treatment options, substantial energy and chemical inputs limit their practical applications. Here we demonstrate that Cu single atoms incorporated in graphitic carbon nitride can catalytically activate H2O2 to generate hydroxyl radicals at pH 7.0 without energy input, and show robust stability within a filtration device. We further design an electrolysis reactor for the on-site generation of H2O2 from air, water and renewable energy. Coupling the single-atom catalytic filter and the H2O2 electrolytic generator in tandem delivers a wastewater treatment system. These findings provide a promising path toward reducing the energy and chemical demands of advanced oxidation processes, as well as enabling their implementation in remote areas and isolated communities.

249 citations

Journal ArticleDOI
TL;DR: The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries and are potentially compatible with industrial battery fabrication processes.
Abstract: Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to >100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.

249 citations

Journal ArticleDOI
TL;DR: A programmable CRISPR-Cas9 based demethylase tool containing the deactivated Cas9 fused to the catalytic domain (CD) of Ten-Eleven Translocation dioxygenase1 (TET1CD) and TET1-dCas9 fusion proteins-mediated demethylation at a target region in BRCA1 gene promoter, a model tumour suppressor gene is examined.
Abstract: // Samrat Roy Choudhury 1 , Yi Cui 1 , Katarzyna Lubecka 2 , Barbara Stefanska 2,3 , Joseph Irudayaraj 1,3 1 Department of Agricultural & Biological Engineering, Bindley Bioscience Centre, Purdue University, West Lafayette, IN 47907, USA 2 Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA 3 Purdue Centre for Cancer Research, Purdue University, West Lafayette, IN 47907, USA Correspondence to: Barbara Stefanska, email: bstefanska@purdue.edu Joseph Irudayaraj, email: josephi@purdue.edu Keywords: CRISPR-dCas9, TET1, BRCA1, DNA demethylation, gene activation Received: March 10, 2016 Accepted: May 30, 2016 Published: June 23, 2016 ABSTRACT DNA hypermethylation at the promoter of tumour-suppressor genes is tightly correlated with their transcriptional repression and recognized as the hallmark of majority of cancers. Epigenetic silencing of tumour suppressor genes impairs their cellular functions and activates a cascade of events driving cell transformation and cancer progression. Here, we examine site-specific and spatiotemporal alteration in DNA methylation at a target region in BRCA1 gene promoter, a model tumour suppressor gene. We have developed a programmable CRISPR-Cas9 based demethylase tool containing the deactivated Cas9 (dCas9) fused to the catalytic domain (CD) of Ten-Eleven Translocation (TET) dioxygenase1 (TET1CD). The fusion protein selectively demethylates targeted regions within BRCA1 promoter as directed by the designed single-guide RNAs (sgRNA), leading to the transcriptional up-regulation of the gene. We also noticed the increment in 5-hydroxymethylation content (5-hmC) at the target DNA site undergoing the most profound demethylation. It confirms the catalytic activity of TET1 in TET1-dCas9 fusion proteins-mediated demethylation at these target sequences. The modular design of the fusion constructs presented here allows for the selective substitution of other chromatin or DNA modifying enzymes and for loci-specific targeting to uncover epigenetic regulatory pathways at gene promoters and other selected genomic regions.

247 citations

Journal ArticleDOI
TL;DR: The results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices.
Abstract: Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film device ...

247 citations

Journal ArticleDOI
TL;DR: A stretchable Li4 Ti5 O12 anode and a LiFePO4 cathode with 80% stretchability are prepared using a 3D interconnected porous polydimethylsiloxane sponge based on sugar cubes to achieve 82% and 91% capacity retention after 500 stretch-release cycles.
Abstract: A stretchable Li4 Ti5 O12 anode and a LiFePO4 cathode with 80% stretchability are prepared using a 3D interconnected porous polydimethylsiloxane sponge based on sugar cubes. 82% and 91% capacity retention for anode and cathode are achieved after 500 stretch-release cycles. Slight capacity decay of 6% in the battery using the electrode in stretched state is observed.

246 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations