scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.
Abstract: Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic–polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic–polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li+ transport along the ceramic–polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10–3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10–4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowin...

231 citations

Journal ArticleDOI
TL;DR: The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling.
Abstract: Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.

230 citations

Journal ArticleDOI
TL;DR: In this article, a facile cathode prelithiation method with nanocomposites of conversion materials is demonstrated to compensate the initial lithium loss and improve the battery performance.
Abstract: Loss of lithium in the initial cycles appreciably reduces the energy density of lithium-ion batteries. Anode prelithiation is a common approach to address the problem, although it faces the issues of high chemical reactivity and instability in ambient and battery processing conditions. Here we report a facile cathode prelithiation method that offers high prelithiation efficacy and good compatibility with existing lithium-ion battery technologies. We fabricate cathode additives consisting of nanoscale mixtures of transition metals and lithium oxide that are obtained by conversion reactions of metal oxide and lithium. These nanocomposites afford a high theoretical prelithiation capacity (typically up to 800 mAh g−1, 2,700 mAh cm−3) during charging. We demonstrate that in a full-cell configuration, the LiFePO4 electrode with a 4.8% Co/Li2O additive shows 11% higher overall capacity than that of the pristine LiFePO4 electrode. The use of the cathode additives provides an effective route to compensate the large initial lithium loss of high-capacity anode materials and improves the electrochemical performance of existing lithium-ion batteries. There is an intensive research effort in suppressing the first-cycle lithium loss in lithium-ion batteries. Now, a cathode prelithiation method with nanocomposites of conversion materials is demonstrated to compensate the initial lithium loss and improve the battery performance.

229 citations

Journal ArticleDOI
TL;DR: In this paper, the feature sizes of the Si particles to the nanoscale and compositing them with highly conductive carbon materials were used to design electrodes with a high active material content for high performance batteries.
Abstract: Despite the high theoretical capacity of Si anodes, their huge volume change and poor electrical connectivity must be overcome by decreasing the feature sizes of the Si particles to the nanoscale and compositing them with highly conductive carbon materials. To ensure the mechanical integrity of the electrodes with uniform dispersion and good electrical contact of the nano-silicon, the industry has to use a relatively low amount of Si ( 2000 mA h g−1 after 300 cycles) and a commercial-level areal capacity (5.58 mA h cm−2). This strategy offers a new way to design electrodes with a high active material content for high performance batteries.

227 citations

Journal ArticleDOI
TL;DR: In this paper, energy relay dye was used for energy relay dyes and Spiro-Ometad was used to accelerate the process of energy relay relay dye processing and transport.
Abstract: Keywords: Energy Relay Dyes ; Spiro-Ometad ; Recombination ; Performance ; Transport ; Design ; Length Reference EPFL-ARTICLE-171308doi:10.1002/aenm.201000041View record in Web of Science Record created on 2011-12-16, modified on 2017-05-12

227 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations