scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: This work synthesizes a new class of fluorinated ether electrolytes that combine the oxidative stability of HFEs with the ionic conductivity of ethers in a single compound and shows that conductivities of up to 2.7×10⁻4 S/cm can be obtained with oxidative stability up to 5.6 V.
Abstract: Increasing battery energy density is greatly desired for applications such as portable electronics and transportation. However, many next-generation batteries are limited by electrolyte selection b...

180 citations

Journal ArticleDOI
TL;DR: A general and scalable synthesis method for porous graphene that is developed through the carbothermal reaction between graphene and metal oxide nanoparticles produced from oxometalates or polyoxometalate is shown.
Abstract: Scalable routes towards porous graphene are useful for developing materials for mass transfer applications. Here, the authors report the fabrication of porous graphene with controllable pore size and nitrogen content via the carbothermal reaction of graphene and (poly)oxometallates.

179 citations

Journal Article
TL;DR: A spin-coupled valley photocurrent is demonstrated, within an electric-double-layer transistor based on WSe2, whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further modulated with an external electric field.

179 citations

Journal ArticleDOI
TL;DR: With its roll-to-roll compatible fabrication procedure, WGC serves as a highly promising material for the practical realization of Li metal anodes in next-generation high energy density secondary batteries.
Abstract: Lithium (Li) metal has long been considered the “holy grail” of battery anode chemistry but is plagued by low efficiency and poor safety due to its high chemical reactivity and large volume fluctuation, respectively. Here we introduce a new host of wrinkled graphene cage (WGC) for Li metal. Different from recently reported amorphous carbon spheres, WGC show highly improved mechanical stability, better Li ion conductivity, and excellent solid electrolyte interphase (SEI) for continuous robust Li metal protection. At low areal capacities, Li metal is preferentially deposited inside the graphene cage. Cryogenic electron microscopy characterization shows that a uniform and stable SEI forms on the WGC surface that can shield the Li metal from direct exposure to electrolyte. With increased areal capacities, Li metal is plated densely and homogeneously into the outer pore spaces between graphene cages with no dendrite growth or volume change. As a result, a high Coulombic efficiency (CE) of ∼98.0% was achieved u...

179 citations

Journal ArticleDOI
TL;DR: It is shown that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band.
Abstract: The use of a metamaterial mirror in a thin-film solar cell enhances light absorption and photocurrent generation by about 20%.

178 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations