scispace - formally typeset
Search or ask a question
Author

Yi Cui

Other affiliations: KAIST, University of California, Berkeley, Harvard University  ...read more
Bio: Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure.
Abstract: Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure. Howev...

139 citations

Journal ArticleDOI
TL;DR: An aqueous inorganic polymer, ammonium polyphosphate (APP), has been developed as a novel multifunctional binder to address the above issues and offers a feasible and effective strategy towards building next-generation high energy density Li–S batteries.
Abstract: Lithium–sulfur (Li–S) batteries are regarded as promising next-generation high energy density storage devices for both portable electronics and electric vehicles due to their high energy density, low cost, and environmental friendliness However, there remain some issues yet to be fully addressed with the main challenges stemming from the ionically insulating nature of sulfur and the dissolution of polysulfides in electrolyte with subsequent parasitic reactions leading to low sulfur utilization and poor cycle life The high flammability of sulfur is another serious safety concern which has hindered its further application Herein, an aqueous inorganic polymer, ammonium polyphosphate (APP), has been developed as a novel multifunctional binder to address the above issues The strong binding affinity of the main chain of APP with lithium polysulfides blocks diffusion of polysulfide anions and inhibits their shuttling effect The coupling of APP with Li ion facilitates ion transfer and promotes the kinetics o

138 citations

Journal ArticleDOI
TL;DR: A previously overlooked mechanism by which lithium deposits can corrode on a copper surface is reported, and a Kirkendall-type mechanism is validated through electrochemical analysis.
Abstract: Developing a viable metallic lithium anode is a prerequisite for next-generation batteries. However, the low redox potential of lithium metal renders it prone to corrosion, which must be thoroughly understood for it to be used in practical energy-storage devices. Here we report a previously overlooked mechanism by which lithium deposits can corrode on a copper surface. Voids are observed in the corroded deposits and a Kirkendall-type mechanism is validated through electrochemical analysis. Although it is a long-held view that lithium corrosion in electrolytes involves direct charge-transfer through the lithium-electrolyte interphase, the corrosion observed here is found to be governed by a galvanic process between lithium and the copper substrate-a pathway largely neglected by previous battery corrosion studies. The observations are further rationalized by detailed analyses of the solid-electrolyte interphase formed on copper and lithium, where the disparities in electrolyte reduction kinetics on the two surfaces can account for the fast galvanic process.

138 citations

Journal ArticleDOI
Emma Laks1, Emma Laks2, Andrew McPherson2, Andrew McPherson1  +156 moreInstitutions (3)
14 Nov 2019-Cell
TL;DR: DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods, has been developed and joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.

137 citations

Journal ArticleDOI
TL;DR: Substitution of selenium for sulfur in the cathode of a rechargeable battery containing Sx molecules in microporous slits in carbon allows a better characterization of the electrochemical reactions that occur.
Abstract: Substitution of selenium for sulfur in the cathode of a rechargeable battery containing Sx molecules in microporous slits in carbon allows a better characterization of the electrochemical reactions that occur. Paired with a metallic lithium anode, the Sex chains are converted to Li2Se in a single-step reaction. With a sodium anode, a sequential chemical reaction is characterized by a continuous chain shortening of Sex upon initial discharge before completing the reduction to Na2Se; on charge, the reconstituted Sex molecules retain a smaller x value than the original Sex chain molecule. In both cases, the Se molecules remain almost completely confined to the micropore slits to give a long cycle life.

137 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations