scispace - formally typeset
Search or ask a question
Author

Yi-Dong Shen

Bio: Yi-Dong Shen is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Cluster analysis & Description logic. The author has an hindex of 27, co-authored 132 publications receiving 2844 citations. Previous affiliations of Yi-Dong Shen include Microsoft & Alibaba Group.


Papers
More filters
Proceedings ArticleDOI
19 Nov 2003
TL;DR: A new pruning strategy based on utilities that allow pruning of low utility itemsets to be done by means of a weaker but antimonotonic condition is developed and shows that it does not require a user specified minimum utility and hence is effective in practice.
Abstract: Traditional association rule mining algorithms only generate a large number of highly frequent rules, but these rules do not provide useful answers for what the high utility rules are. We develop a novel idea of top-K objective-directed data mining, which focuses on mining the top-K high utility closed patterns that directly support a given business objective. To association mining, we add the concept of utility to capture highly desirable statistical patterns and present a level-wise item-set mining algorithm. With both positive and negative utilities, the antimonotone pruning strategy in Apriori algorithm no longer holds. In response, we develop a new pruning strategy based on utilities that allow pruning of low utility itemsets to be done by means of a weaker but antimonotonic condition. Our experimental results show that our algorithm does not require a user specified minimum utility and hence is effective in practice.

443 citations

Journal ArticleDOI
TL;DR: An end-to-end dual-path convolutional network to learn the image and text representations based on an unsupervised assumption that each image/text group can be viewed as a class, which allows the system to directly learn from the data and fully utilize the supervision.
Abstract: Matching images and sentences demands a fine understanding of both modalities In this paper, we propose a new system to discriminatively embed the image and text to a shared visual-textual space In this field, most existing works apply the ranking loss to pull the positive image / text pairs close and push the negative pairs apart from each other However, directly deploying the ranking loss is hard for network learning, since it starts from the two heterogeneous features to build inter-modal relationship To address this problem, we propose the instance loss which explicitly considers the intra-modal data distribution It is based on an unsupervised assumption that each image / text group can be viewed as a class So the network can learn the fine granularity from every image/text group The experiment shows that the instance loss offers better weight initialization for the ranking loss, so that more discriminative embeddings can be learned Besides, existing works usually apply the off-the-shelf features, ie, word2vec and fixed visual feature So in a minor contribution, this paper constructs an end-to-end dual-path convolutional network to learn the image and text representations End-to-end learning allows the system to directly learn from the data and fully utilize the supervision On two generic retrieval datasets (Flickr30k and MSCOCO), experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods Moreover, in language based person retrieval, we improve the state of the art by a large margin The code has been made publicly available

231 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed an end-to-end dual-path convolutional network to learn the image and text representations, which is based on an unsupervised assumption that each image/text group can be viewed as a class.
Abstract: Matching images and sentences demands a fine understanding of both modalities. In this article, we propose a new system to discriminatively embed the image and text to a shared visual-textual space. In this field, most existing works apply the ranking loss to pull the positive image/text pairs close and push the negative pairs apart from each other. However, directly deploying the ranking loss on heterogeneous features (i.e., text and image features) is less effective, because it is hard to find appropriate triplets at the beginning. So the naive way of using the ranking loss may compromise the network from learning inter-modal relationship. To address this problem, we propose the instance loss, which explicitly considers the intra-modal data distribution. It is based on an unsupervised assumption that each image/text group can be viewed as a class. So the network can learn the fine granularity from every image/text group. The experiment shows that the instance loss offers better weight initialization for the ranking loss, so that more discriminative embeddings can be learned. Besides, existing works usually apply the off-the-shelf features, i.e., word2vec and fixed visual feature. So in a minor contribution, this article constructs an end-to-end dual-path convolutional network to learn the image and text representations. End-to-end learning allows the system to directly learn from the data and fully utilize the supervision. On two generic retrieval datasets (Flickr30k and MSCOCO), experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods. Moreover, in language-based person retrieval, we improve the state of the art by a large margin. The code has been made publicly available.

161 citations

Proceedings ArticleDOI
10 Aug 2015
TL;DR: In this paper, a unified learning framework is proposed to perform structure learning and feature selection simultaneously, where the structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data.
Abstract: The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods.

154 citations

Proceedings Article
25 Jul 2015
TL;DR: A novel robust multiple kernel k-means algorithm that simultaneously finds the best clustering label, the cluster membership and the optimal combination of multiple kernels is proposed and an alternating iterative schema is developed to find the optimal value.
Abstract: The k-means algorithm is one of the most often used method for data clustering. However, the standard k-means can only be applied in the original feature space. The kernel k-means, which extends k-means into the kernel space, can be used to capture the non-linear structure and identify arbitrarily shaped clusters. Since both the standard k-means and kernel k-means apply the squared error to measure the distances between data points and cluster centers, a few outliers will cause large errors and dominate the objection function. Besides, the performance of kernel method is largely determined by the choice of kernel. Unfortunately, the most suitable kernel for a particular task is often unknown in advance. In this paper, we first present a robust k-means using l2,1-norm in the feature space and then extend it to the kernel space. To recap the powerfulness of kernel methods, we further propose a novel robust multiple kernel k-means (RMKKM) algorithm that simultaneously finds the best clustering label, the cluster membership and the optimal combination of multiple kernels. An alternating iterative schema is developed to find the optimal value. Extensive experiments well demonstrate the effectiveness of the proposed algorithms.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
TL;DR: This survey revisits feature selection research from a data perspective and reviews representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data, and categorizes them into four main groups: similarity- based, information-theoretical-based, sparse-learning-based and statistical-based.
Abstract: Feature selection, as a data preprocessing strategy, has been proven to be effective and efficient in preparing data (especially high-dimensional data) for various data-mining and machine-learning problems. The objectives of feature selection include building simpler and more comprehensible models, improving data-mining performance, and preparing clean, understandable data. The recent proliferation of big data has presented some substantial challenges and opportunities to feature selection. In this survey, we provide a comprehensive and structured overview of recent advances in feature selection research. Motivated by current challenges and opportunities in the era of big data, we revisit feature selection research from a data perspective and review representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data. Methodologically, to emphasize the differences and similarities of most existing feature selection algorithms for conventional data, we categorize them into four main groups: similarity-based, information-theoretical-based, sparse-learning-based, and statistical-based methods. To facilitate and promote the research in this community, we also present an open source feature selection repository that consists of most of the popular feature selection algorithms (http://featureselection.asu.edu/). Also, we use it as an example to show how to evaluate feature selection algorithms. At the end of the survey, we present a discussion about some open problems and challenges that require more attention in future research.

1,566 citations