scispace - formally typeset
Search or ask a question
Author

Yi Guo

Bio: Yi Guo is an academic researcher from Fudan University. The author has contributed to research in topics: Segmentation & Image segmentation. The author has an hindex of 15, co-authored 67 publications receiving 854 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Zeju Li1, Yuanyuan Wang1, Jinhua Yu1, Yi Guo1, Wei Cao1 
TL;DR: The performance of DLR for predicting the mutation status of isocitrate dehydrogenase 1 (IDH1) was validated in a dataset of 151 patients with low-grade glioma and the AUC of IDH1 estimation was improved to 95% using DLR based on multiple-modality MR images, suggesting DLR could be a powerful way to extract deep information from medical images.
Abstract: Deep learning-based radiomics (DLR) was developed to extract deep information from multiple modalities of magnetic resonance (MR) images. The performance of DLR for predicting the mutation status of isocitrate dehydrogenase 1 (IDH1) was validated in a dataset of 151 patients with low-grade glioma. A modified convolutional neural network (CNN) structure with 6 convolutional layers and a fully connected layer with 4096 neurons was used to segment tumors. Instead of calculating image features from segmented images, as typically performed for normal radiomics approaches, image features were obtained by normalizing the information of the last convolutional layers of the CNN. Fisher vector was used to encode the CNN features from image slices of different sizes. High-throughput features with dimensionality greater than 1.6*104 were obtained from the CNN. Paired t-tests and F-scores were used to select CNN features that were able to discriminate IDH1. With the same dataset, the area under the operating characteristic curve (AUC) of the normal radiomics method was 86% for IDH1 estimation, whereas for DLR the AUC was 92%. The AUC of IDH1 estimation was further improved to 95% using DLR based on multiple-modality MR images. DLR could be a powerful way to extract deep information from medical images.

252 citations

Journal ArticleDOI
Yuzhou Hu1, Yi Guo1, Yuanyuan Wang1, Jinhua Yu1, Jiawei Li1, Shichong Zhou1, Cai Chang1 
TL;DR: The proposed automatic tumor segmentation method may be sufficiently accurate, robust, and efficient for medical ultrasound applications.
Abstract: Purpose Due to the low contrast, blurry boundaries, and large amount of shadows in breast ultrasound (BUS) images, automatic tumor segmentation remains a challenging task. Deep learning provides a solution to this problem, since it can effectively extract representative features from lesions and the background in BUS images. Methods A novel automatic tumor segmentation method is proposed by combining a dilated fully convolutional network (DFCN) with a phase-based active contour (PBAC) model. The DFCN is an improved fully convolutional neural network with dilated convolution in deeper layers, fewer parameters, and batch normalization techniques; and has a large receptive field that can separate tumors from background. The predictions made by the DFCN are relatively rough due to blurry boundaries and variations in tumor sizes; thus, the PBAC model, which adds both region-based and phase-based energy functions, is applied to further improve segmentation results. The DFCN model is trained and tested in dataset 1 which contains 570 BUS images from 89 patients. In dataset 2, a 10-fold support vector machine (SVM) classifier is employed to verify the diagnostic ability using 460 features extracted from the segmentation results of the proposed method. Results Advantages of the present method were compared with three state-of-the-art networks; the FCN-8s, U-net, and dilated residual network (DRN). Experimental results from 170 BUS images show that the proposed method had a Dice Similarity coefficient of 88.97 ± 10.01%, a Hausdorff distance (HD) of 35.54 ± 29.70 pixels, and a mean absolute deviation (MAD) of 7.67 ± 6.67 pixels, which showed the best segmentation performance. In dataset 2, the area under curve (AUC) of the 10-fold SVM classifier was 0.795 which is similar to the classification using the manual segmentation results. Conclusions The proposed automatic method may be sufficiently accurate, robust, and efficient for medical ultrasound applications.

115 citations

Journal ArticleDOI
Yi Guo1, Yuzhou Hu1, Mengyun Qiao1, Yuanyuan Wang1, Jinhua Yu1, Jiawei Li1, Cai Chang1 
TL;DR: An automatic radiomics approach was proposed to assess the associations between quantitative ultrasound features and biologic characteristics and demonstrated a strong correlation between receptor status and subtypes.

103 citations

Journal ArticleDOI
TL;DR: A transfer learning radiomics (TLR) model for preoperative prediction of LNM in PTC patients in a multicenter, cross-machine, multi-operator scenario produces a stable LNM prediction.
Abstract: Non-invasive assessment of the risk of lymph node metastasis (LNM) in patients with papillary thyroid carcinoma (PTC) is of great value for the treatment option selection. The purpose of this paper is to develop a transfer learning radiomics (TLR) model for preoperative prediction of LNM in PTC patients in a multicenter, cross-machine, multi-operator scenario. Here we report the TLR model produces a stable LNM prediction. In the experiments of cross-validation and independent testing of the main cohort according to diagnostic time, machine, and operator, the TLR achieves an average area under the curve (AUC) of 0.90. In the other two independent cohorts, TLR also achieves 0.93 AUC, and this performance is statistically better than the other three methods according to Delong test. Decision curve analysis also proves that the TLR model brings more benefit to PTC patients than other methods.

92 citations

Journal ArticleDOI
TL;DR: For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features.
Abstract: A radiomics approach to sonoelastography, called "sonoelastomics," is proposed for classification of benign and malignant breast tumors. From sonoelastograms of breast tumors, a high-throughput 364-dimensional feature set was calculated consisting of shape features, intensity statistics, gray-level co-occurrence matrix texture features and contourlet texture features, which quantified the shape, hardness and hardness heterogeneity of a tumor. The high-throughput features were then selected for feature reduction using hierarchical clustering and three-feature selection metrics. For a data set containing 42 malignant and 75 benign tumors from 117 patients, seven selected sonoelastomic features achieved an area under the receiver operating characteristic curve of 0.917, an accuracy of 88.0%, a sensitivity of 85.7% and a specificity of 89.3% in a validation set via the leave-one-out cross-validation, revealing superiority over the principal component analysis, deep polynomial networks and manually selected features. The sonoelastomic features are valuable in breast tumor differentiation.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

01 Jan 2016
TL;DR: As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads.
Abstract: Thank you very much for reading statistical parametric mapping the analysis of functional brain images. As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they cope with some infectious bugs inside their desktop computer.

1,719 citations

Journal ArticleDOI
TL;DR: The general principles of DL and convolutional neural networks are introduced, five major areas of application of DL in medical imaging and radiation therapy are surveyed, common themes are identified, methods for dataset expansion are discussed, and lessons learned, remaining challenges, and future directions are summarized.
Abstract: The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.

525 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the betweenness centrality of nodes in large complex networks and showed that for trees or networks with a small loop density, a larger density of loops leads to the same result.
Abstract: We analyze the betweenness centrality (BC) of nodes in large complex networks. In general, the BC is increasing with connectivity as a power law with an exponent $\eta$. We find that for trees or networks with a small loop density $\eta=2$ while a larger density of loops leads to $\eta<2$. For scale-free networks characterized by an exponent $\gamma$ which describes the connectivity distribution decay, the BC is also distributed according to a power law with a non universal exponent $\delta$. We show that this exponent $\delta$ must satisfy the exact bound $\delta\geq (\gamma+1)/2$. If the scale free network is a tree, then we have the equality $\delta=(\gamma+1)/2$.

477 citations