scispace - formally typeset
Search or ask a question
Author

Yi-Hsin Weng

Bio: Yi-Hsin Weng is an academic researcher from Intel. The author has contributed to research in topics: Spiking neural network & Neuromorphic engineering. The author has an hindex of 2, co-authored 2 publications receiving 1310 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Loihi is a 60-mm2 chip fabricated in Intels 14-nm process that advances the state-of-the-art modeling of spiking neural networks in silicon, and can solve LASSO optimization problems with over three orders of magnitude superior energy-delay-product compared to conventional solvers running on a CPU iso-process/voltage/area.
Abstract: Loihi is a 60-mm2 chip fabricated in Intels 14-nm process that advances the state-of-the-art modeling of spiking neural networks in silicon. It integrates a wide range of novel features for the field, such as hierarchical connectivity, dendritic compartments, synaptic delays, and, most importantly, programmable synaptic learning rules. Running a spiking convolutional form of the Locally Competitive Algorithm, Loihi can solve LASSO optimization problems with over three orders of magnitude superior energy-delay-product compared to conventional solvers running on a CPU iso-process/voltage/area. This provides an unambiguous example of spike-based computation, outperforming all known conventional solutions.

2,331 citations

Proceedings ArticleDOI
Andrew Lines1, Prasad Joshi1, Ruokun Liu1, Steve McCoy1, Jonathan Tse1, Yi-Hsin Weng1, Michael Davies1 
13 May 2018
TL;DR: The pre-silicon design was verified by static timing analysis, back-annotated gate-level simulation, and FPGA emulation, and Tunable delay lines provide sufficient timing margin in extreme corners such as near-threshold-voltage.
Abstract: Intel's "Loihi" neuromorphic research chip implements spiking neural networks on 128 custom cores with 1024 neurons each. It supports a wide variety of algorithms inspired by computational neuroscience, notably on-chip learning. Loihi's design is specified in the Communicating Sequential Processes (CSP) language and implemented by an automated flow that generates two-phase bundled-data (BD) asynchronous pipelines with pulsed latch datapaths. This optimizes area and energy while using a mostly standard cell library and simplifies integration with synchronous collateral. The pre-silicon design was verified by static timing analysis, back-annotated gate-level simulation, and FPGA emulation. Tunable delay lines provide sufficient timing margin in extreme corners such as near-threshold-voltage. Loihi was manufactured in Intel's 14nm ASIC process in Q4 2017 and is functional from 0.55V to 1.25V.

31 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2019-Nature
TL;DR: An overview of the developments in neuromorphic computing for both algorithms and hardware is provided and the fundamentals of learning and hardware frameworks are highlighted, with emphasis on algorithm–hardware codesign.
Abstract: Guided by brain-like ‘spiking’ computational frameworks, neuromorphic computing—brain-inspired computing for machine intelligence—promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm–hardware codesign. The authors review the advantages and future prospects of neuromorphic computing, a multidisciplinary engineering concept for energy-efficient artificial intelligence with brain-inspired functionality.

877 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras.
Abstract: Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of is), very high dynamic range (140dB vs. 60dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

697 citations

Journal ArticleDOI
TL;DR: In this paper, the spin degree of freedom of electrons and/or holes, which can also interact with their orbital moments, is described with respect to the spin generation methods as detailed in Sections 2-~-9.

614 citations

Journal ArticleDOI
01 Jul 2018
TL;DR: This Review Article examines the development of organic neuromorphic devices, considering the different switching mechanisms used in the devices and the challenges the field faces in delivering neuromorphic computing applications.
Abstract: Neuromorphic computing could address the inherent limitations of conventional silicon technology in dedicated machine learning applications. Recent work on silicon-based asynchronous spiking neural networks and large crossbar arrays of two-terminal memristive devices has led to the development of promising neuromorphic systems. However, delivering a compact and efficient parallel computing technology that is capable of embedding artificial neural networks in hardware remains a significant challenge. Organic electronic materials offer an attractive option for such systems and could provide biocompatible and relatively inexpensive neuromorphic devices with low-energy switching and excellent tunability. Here, we review the development of organic neuromorphic devices. We consider different resistance-switching mechanisms, which typically rely on electrochemical doping or charge trapping, and report approaches that enhance state retention and conductance tuning. We also discuss the challenges the field faces in implementing low-power neuromorphic computing, such as device downscaling and improving device speed. Finally, we highlight early demonstrations of device integration into arrays, and consider future directions and potential applications of this technology.

568 citations

Journal ArticleDOI
31 Jul 2019-Nature
TL;DR: The Tianjic chip is presented, which integrates neuroscience-oriented and computer-science-oriented approaches to artificial general intelligence to provide a hybrid, synergistic platform and is expected to stimulate AGI development by paving the way to more generalized hardware platforms.
Abstract: There are two general approaches to developing artificial general intelligence (AGI)1: computer-science-oriented and neuroscience-oriented. Because of the fundamental differences in their formulations and coding schemes, these two approaches rely on distinct and incompatible platforms2–8, retarding the development of AGI. A general platform that could support the prevailing computer-science-based artificial neural networks as well as neuroscience-inspired models and algorithms is highly desirable. Here we present the Tianjic chip, which integrates the two approaches to provide a hybrid, synergistic platform. The Tianjic chip adopts a many-core architecture, reconfigurable building blocks and a streamlined dataflow with hybrid coding schemes, and can not only accommodate computer-science-based machine-learning algorithms, but also easily implement brain-inspired circuits and several coding schemes. Using just one chip, we demonstrate the simultaneous processing of versatile algorithms and models in an unmanned bicycle system, realizing real-time object detection, tracking, voice control, obstacle avoidance and balance control. Our study is expected to stimulate AGI development by paving the way to more generalized hardware platforms. The ‘Tianjic’ hybrid electronic chip combines neuroscience-oriented and computer-science-oriented approaches to artificial general intelligence, demonstrated by controlling an unmanned bicycle.

545 citations