scispace - formally typeset
Search or ask a question
Author

Yi-Hung Yang

Bio: Yi-Hung Yang is an academic researcher from National Tsing Hua University. The author has contributed to research in topics: Extraction (chemistry) & Biohydrogen. The author has an hindex of 3, co-authored 3 publications receiving 172 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the literature on microalgae that were cultivated using captured CO_2, technologies related to the production of bio-fuels from micro-algae and the possible commercialization of micro-algal-based bio-fuel.
Abstract: Fossil fuels, which are recognized as unsustainable sources of energy, are continuously consumed and decreased with increasing fuel demands. Microalgae have great potential as renewable fuel sources because they possess rapid growth rate and the ability to store high-quality lipids and carbohydrates inside their cells for biofuel production. Microalgae can be cultivated on opened or closed systems and require nutrients and CO_2 that may be supplied from wastewater and fossil fuel combustion. In addition, CO_2 capture via photosynthesis to directly fix carbon into microalgae has also attracted the attention of researchers. The conversion of CO_2 into chemical and fuel (energy) products without pollution via this approach is a promising way to not only reduce CO_2 emissions but also generate more economic value. The harvested microalgal biomass can be converted into biofuel products, such as biohydrogen, biodiesel, biomethanol, bioethanol, biobutanol and biohydrocarbons. Thus, microalgal cultivation can contribute to CO_2 fixation and can be a source of biofuels. This article reviews the literature on microalgae that were cultivated using captured CO_2, technologies related to the production of biofuels from microalgae and the possible commercialization of microalgae-based biofuels to demonstrate the potential of microalgae. In this respect, a number of relevant topics are addressed: the nature of microalgae (e.g., species and composition); CO_2 capture via microalgae; the techniques for microalgal cultivation, harvesting and pretreatment; and the techniques for lipid extraction and biofuel production. The strategies for biofuel commercialization are proposed as well.

179 citations

Journal ArticleDOI
TL;DR: Not only the lipid yield obtained using CXE was observed to be significantly greater than those using ethanol and pressurized ethanol as the solvents, but also a lower amount of ethanol and less time were required to achieve the same extraction yield by using CxE.

32 citations

Journal ArticleDOI
TL;DR: The CXM was found to be a superior solvent to methanol, ethanol, pressurized meethanol and ethanol, and CO2-expanded ethanol for lipid extraction, and a safer and more energy efficient for lipid extractions from C. vulgaris.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review considers several aspects of the most prominent sustainable organicsolvents in use today, ionic liquids, deep eutectic solvents, supercritical fluids, switchable solVents, liquid polymers, and renewable solvent, giving a more complete picture of the current status of sustainable solvent research and development.
Abstract: Sustainable solvents are a topic of growing interest in both the research community and the chemical industry due to a growing awareness of the impact of solvents on pollution, energy usage, and contributions to air quality and climate change. Solvent losses represent a major portion of organic pollution, and solvent removal represents a large proportion of process energy consumption. To counter these issues, a range of greener or more sustainable solvents have been proposed and developed over the past three decades. Much of the focus has been on the environmental credentials of the solvent itself, although how a substance is deployed is as important to sustainability as what it is made from. In this Review, we consider several aspects of the most prominent sustainable organic solvents in use today, ionic liquids, deep eutectic solvents, supercritical fluids, switchable solvents, liquid polymers, and renewable solvents. We examine not only the performance of each class of solvent within the context of the...

1,051 citations

Journal ArticleDOI
TL;DR: The cultivation conditions for biomass growth and lipid productivity improvement, the available harvesting and lipid extraction technologies, as well as the key challenges and future prospect of microalgae biodiesel production are illustrated.
Abstract: Microalgae has been identified as a potential feedstock for biodiesel production since its cultivation requires less cropland compared to conventional oil crops and the high growth rate of microalgae. Research on microalgae oils often are focused on microalgae oil extraction and biomass harvesting techniques. However, energy intensive and costly lipid extraction methods are the major obstacles hampering microalgae biodiesel commercialisation. Direct biodiesel synthesis avoids such problems as it combines lipid extraction techniques and transesterification into a single step. In this review, the potential of direct biodiesel synthesis from microalgae biomass was comprehensively analysed. The various species of microalgae commonly used as biodiesel feedstock was critically assessed, particularly on high lipid content species. The production of microalgae biodiesel via direct conversion from biomass was systematically discussed, covering major enhancements such as heterogeneous catalysts, the use of ultrasonic and microwave- techniques and supercritical alcohols that focus on the overall improvement of biodiesel production. In addition, this review illustrates the cultivation conditions for biomass growth and lipid productivity improvement, the available harvesting and lipid extraction technologies, as well as the key challenges and future prospect of microalgae biodiesel production. This review serves as a basis for future research on direct biodiesel synthesis from modified microalgae biomass to improve profitability of microalgae biodiesel.

252 citations

Journal ArticleDOI
TL;DR: The multifaceted roles of microalgae in wastewater treatment from the extent of micro algal bioremediation function to environmental amelioration with the involvement of microalgal biomass productivity and carbon dioxide fixation are highlighted.

217 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an updated perspective on the use of compressed fluids, mainly under sub- and supercritical conditions, for the extraction of bioactive components from natural matrices covering the period from 2015 to present.
Abstract: Following our previous reviews, this manuscript presents an updated perspective on the use of compressed fluids, mainly under sub- and supercritical conditions, for the extraction of bioactive components from natural matrices covering the period from 2015 to present. These extraction technologies might have an important role in the development of sustainable and efficient extraction processes to cope with the high demand of natural bioactive compounds. Moreover, more complex approaches based on process integration, intensification and the development of sequential valorization chains are being increasingly developed. Most recent and interesting applications grouped according to the type of natural material used (plants, seaweeds, microalgae and food-related by-products) are described and critically commented. Furthermore, we discuss the potential future outlooks related to this field in agreement with our own experience.

161 citations