scispace - formally typeset
Search or ask a question
Author

Yi Kang Chai

Bio: Yi Kang Chai is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: AC power & Microgrid. The author has an hindex of 6, co-authored 6 publications receiving 1032 citations.

Papers
More filters
Journal ArticleDOI
15 Sep 2011
TL;DR: In this article, the authors investigated on the active and reactive power sharing of an autonomous hybrid microgrid, which comprises dc and ac sub-grids, interconnected by power electronic interfaces.
Abstract: This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid.

620 citations

Journal ArticleDOI
TL;DR: In this paper, an appropriate control scheme is developed for controlling the interlinking converter to keep the hybrid microgrid in autonomous operation with active power proportionally shared among its distributed sources.
Abstract: The coexistence of ac and dc subgrids in a hybrid microgrid is likely given that modern distributed sources can either be ac or dc. Linking these subgrids is a power converter, whose topology should preferably be not too unconventional. This is to avoid unnecessary compromises to reliability, simplicity, and industry relevance of the converter. The desired operating features of the hybrid microgrid can then be added through this interlinking converter. To demonstrate, an appropriate control scheme is now developed for controlling the interlinking converter. The objective is to keep the hybrid microgrid in autonomous operation with active power proportionally shared among its distributed sources. Power sharing here should depend only on the source ratings and not their placements within the hybrid microgrid. The proposed scheme can also be extended to include energy storage within the interlinking converter, as already proven in simulation and experiment. These findings have not been previously discussed in the literature, where existing schemes are mostly for an ac or a dc microgrid, but not both in coexistence.

321 citations

Journal ArticleDOI
TL;DR: In this article, a control scheme for the hybrid microgrids is developed, which can operate efficiently with progressive energy flow tuning and no requirement for fast communication links, and a plug-in scheme is also proposed for progressive and selective charging/discharging of storages for energy smoothing and ride-through purposes.
Abstract: Modern distributed sources and loads can either be ac or dc. It is thus possible to have ac and dc subgrids intertied to form hybrid microgrids with lesser power conversion, and hence higher efficiency. However, operation of hybrid microgrids to gain these advantages is not trivial, and is so far limited. It is, therefore, the theme here to develop a control scheme for the hybrid microgrids so that they can operate efficiently with progressive energy flow tuning and no requirement for fast communication links. A plug-in scheme is also proposed for progressive and selective charging/discharging of storages, which are likely to be present in the hybrid microgrids for energy smoothing and ride-through purposes. The overall scheme has already been verified in experiment.

150 citations

Proceedings ArticleDOI
02 Jun 2012
TL;DR: In this article, a control scheme for hybrid microgrids is proposed to operate efficiently with progressive energy flow tuning and no requirement for fast communication links, and a plug-in scheme is also proposed for progressive and selective charging / discharging of storages, which are likely to be present in the hybrid micro-grids for energy smoothing and ride-through purposes.
Abstract: Modern distributed sources and loads can either be ac or dc. It is thus possible to have ac and dc sub-grids inter-tied to form hybrid microgrids with lesser power conversion and hence higher efficiency. However, operation of hybrid microgrids to gain these advantages is not trivial, and is so far limited. It is therefore the theme here to develop a control scheme for the hybrid microgrids so that they can operate efficiently with progressive energy flow tuning and no requirement for fast communication links. A plug-in scheme is also proposed for progressive and selective charging / discharging of storages, which are likely to be present in the hybrid microgrids for energy smoothing and ride-through purposes. The overall scheme has already been verified in experiment.

67 citations

Journal ArticleDOI
TL;DR: In this paper, a droop scheme is proposed for coordinating energy flows within the hybrid microgrids, which operates autonomously and efficiently without demanding for fast communication links, and has been tested in experiments.
Abstract: Modern distributed sources can either be ac or dc. It is thus possible to form hybrid microgrids with both ac and dc sub-grids inter-tied by power converters. The resulting hybrid architecture allows loads to be flexibly placed, hence reducing the amount of power conversion needed. Hybrid microgrids can therefore be more efficient if controlled appropriately. For that, a droop scheme is now proposed for coordinating energy flows within the hybrid microgrids. The scheme operates autonomously and efficiently without demanding for fast communication links. The overall energy flow tuning and hybrid microgrids have already been tested in experiments.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

2,358 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads.
Abstract: This paper presents the latest comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads. A survey on the alternative DG units' configurations in the low voltage AC (LVAC) and DC (LVDC) distribution networks with several applications of microgrid systems in the viewpoint of the current and the future consumer equipments energy market is extensively discussed. Based on the economical, technical and environmental benefits of the renewable energy related DG units, a thorough comparison between the two types of microgrid systems is provided. The paper also investigates the feasibility, control and energy management strategies of the two microgrid systems relying on the most current research works. Finally, the generalized relay tripping currents are derived and the protection strategies in microgrid systems are addressed in detail. From this literature survey, it can be revealed that the AC and DC microgrid systems with multiconverter devices are intrinsically potential for the future energy systems to achieve reliability, efficiency and quality power supply.

1,004 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the state of the art in dc microgrid protection and grounding is provided, which discusses both design of practical protective devices and their integration into overall protection systems.
Abstract: DC microgrids (MGs) have been gaining a continually increasing interest over the past couple of years both in academia and industry. The advantages of dc distribution when compared to its ac counterpart are well known. The most important ones include higher reliability and efficiency, simpler control and natural interface with renewable energy sources, and electronic loads and energy storage systems. With rapid emergence of these components in modern power systems, the importance of dc in today's society is gradually being brought to a whole new level. A broad class of traditional dc distribution applications, such as traction, telecom, vehicular, and distributed power systems can be classified under dc MG framework and ongoing development, and expansion of the field is largely influenced by concepts used over there. This paper aims first to shed light on the practical design aspects of dc MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in dc MG protection and grounding is provided. Owing to the fact that there is no zero-current crossing, an arc that appears upon breaking dc current cannot be extinguished naturally, making the protection of dc MGs a challenging problem. In relation with this, a comprehensive overview of protection schemes, which discusses both design of practical protective devices and their integration into overall protection systems, is provided. Closely coupled with protection, conflicting grounding objectives, e.g., minimization of stray current and common-mode voltage, are explained and several practical solutions are presented. Also, standardization efforts for dc systems are addressed. Finally, concluding remarks and important future research directions are pointed out.

964 citations

Journal ArticleDOI
TL;DR: This paper presents a review of issues concerning microgrid issues and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, micro grid operation and control, micro grids clusters, and protection and communications issues.
Abstract: The significant benefits associated with microgrids have led to vast efforts to expand their penetration in electric power systems. Although their deployment is rapidly growing, there are still many challenges to efficiently design, control, and operate microgrids when connected to the grid, and also when in islanded mode, where extensive research activities are underway to tackle these issues. It is necessary to have an across-the-board view of the microgrid integration in power systems. This paper presents a review of issues concerning microgrids and provides an account of research in areas related to microgrids, including distributed generation, microgrid value propositions, applications of power electronics, economic issues, microgrid operation and control, microgrid clusters, and protection and communications issues.

875 citations

Journal ArticleDOI
TL;DR: In this paper, a cooperative control paradigm is used to establish a distributed secondary/primary control framework for dc microgrids, where the conventional secondary control, that adjusts the voltage set point for the local droop mechanism, is replaced by a voltage regulator and a current regulator.
Abstract: A cooperative control paradigm is used to establish a distributed secondary/primary control framework for dc microgrids. The conventional secondary control, that adjusts the voltage set point for the local droop mechanism, is replaced by a voltage regulator and a current regulator. A noise-resilient voltage observer is introduced that uses neighbors’ data to estimate the average voltage across the microgrid. The voltage regulator processes this estimation and generates a voltage correction term to adjust the local voltage set point. This adjustment maintains the microgrid voltage level as desired by the tertiary control. The current regulator compares the local per-unit current of each converter with the neighbors’ and, accordingly, provides a second voltage correction term to synchronize per-unit currents and, thus, provide proportional load sharing. The proposed controller precisely handles the transmission line impedances. The controller on each converter communicates with only its neighbor converters on a communication graph. The graph is a sparse network of communication links spanned across the microgrid to facilitate data exchange. The global dynamic model of the microgrid is derived, and design guidelines are provided to tune the system's dynamic response. A low-voltage dc microgrid prototype is set up, where the controller performance, noise resiliency, link-failure resiliency, and the plug-and-play capability features are successfully verified.

715 citations