scispace - formally typeset
Search or ask a question
Author

Yi-Ping Phoebe Chen

Bio: Yi-Ping Phoebe Chen is an academic researcher from La Trobe University. The author has contributed to research in topics: Feature selection & Computer science. The author has an hindex of 33, co-authored 268 publications receiving 4206 citations. Previous affiliations of Yi-Ping Phoebe Chen include Fujian Agriculture and Forestry University & Deakin University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is seen that factors such as chest pain being asymptomatic and the presence of exercise-induced angina indicate the likely existence of heart disease for both men and women, and resting ECG status is a key distinct factor for heart disease prediction.
Abstract: This paper investigates the sick and healthy factors which contribute to heart disease for males and females. Association rule mining, a computational intelligence approach, is used to identify these factors and the UCI Cleveland dataset, a biological database, is considered along with the three rule generation algorithms - Apriori, Predictive Apriori and Tertius. Analyzing the information available on sick and healthy individuals and taking confidence as an indicator, females are seen to have less chance of coronary heart disease then males. Also, the attributes indicating healthy and sick conditions were identified. It is seen that factors such as chest pain being asymptomatic and the presence of exercise-induced angina indicate the likely existence of heart disease for both men and women. However, resting ECG being either normal or hyper and slope being flat are potential high risk factors for women only. For men, on the other hand, only a single rule expressing resting ECG being hyper was shown to be a significant factor. This means, for women, resting ECG status is a key distinct factor for heart disease prediction. Comparing the healthy status of men and women, slope being up, number of coloured vessels being zero, and oldpeak being less than or equal to 0.56 indicate a healthy status for both genders.

329 citations

Journal ArticleDOI
TL;DR: The experimental results demonstrate that the use of MFS noticeably improved the performance, especially in terms of accuracy, for most of the classifiers considered and for majority of the datasets (generated by converting the Cleveland dataset for binary classification).
Abstract: This paper investigates a number of computational intelligence techniques in the detection of heart disease. Particularly, comparison of six well known classifiers for the well used Cleveland data is performed. Further, this paper highlights the potential of an expert judgment based (i.e., medical knowledge driven) feature selection process (termed as MFS), and compare against the generally employed computational intelligence based feature selection mechanism. Also, this article recognizes that the publicly available Cleveland data becomes imbalanced when considering binary classification. Performance of classifiers, and also the potential of MFS are investigated considering this imbalanced data issue. The experimental results demonstrate that the use of MFS noticeably improved the performance, especially in terms of accuracy, for most of the classifiers considered and for majority of the datasets (generated by converting the Cleveland dataset for binary classification). MFS combined with the computerized feature selection process (CFS) has also been investigated and showed encouraging results particularly for NaiveBayes, IBK and SMO. In summary, the medical knowledge based feature selection method has shown promise for use in heart disease diagnostics.

223 citations

Journal ArticleDOI
TL;DR: In silico strategies and modules applied at the level of hit identification and confer the different challenges with possible solutions in enhancing the success rate of the 'hit-to-lead' phase that could eventually help the progress of SBDD in the drug discovery arena are reviewed.

217 citations

Journal ArticleDOI
TL;DR: A novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy, and an optimized structure of the traffic flow forecasting model with a deep learning approach is presented.
Abstract: Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

216 citations

Journal ArticleDOI
TL;DR: A novel algorithm is presented in this paper, which can be applied on a small sized data set with a high number of features and outperform the commonly used Principle Component Analysis (PCA)/Multi-Dimensional Scaling (MDS) methods, and the more recently developed ISOMap dimensionality reduction method.
Abstract: Emotional expression and understanding are normal instincts of human beings, but automatical emotion recognition from speech without referring any language or linguistic information remains an unclosed problem. The limited size of existing emotional data samples, and the relative higher dimensionality have outstripped many dimensionality reduction and feature selection algorithms. This paper focuses on the data preprocessing techniques which aim to extract the most effective acoustic features to improve the performance of the emotion recognition. A novel algorithm is presented in this paper, which can be applied on a small sized data set with a high number of features. The presented algorithm integrates the advantages from a decision tree method and the random forest ensemble. Experiment results on a series of Chinese emotional speech data sets indicate that the presented algorithm can achieve improved results on emotional recognition, and outperform the commonly used Principle Component Analysis (PCA)/Multi-Dimensional Scaling (MDS) methods, and the more recently developed ISOMap dimensionality reduction method.

198 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Book
01 Jan 1995
TL;DR: In this article, Nonaka and Takeuchi argue that Japanese firms are successful precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies, and they reveal how Japanese companies translate tacit to explicit knowledge.
Abstract: How has Japan become a major economic power, a world leader in the automotive and electronics industries? What is the secret of their success? The consensus has been that, though the Japanese are not particularly innovative, they are exceptionally skilful at imitation, at improving products that already exist. But now two leading Japanese business experts, Ikujiro Nonaka and Hiro Takeuchi, turn this conventional wisdom on its head: Japanese firms are successful, they contend, precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies. Examining case studies drawn from such firms as Honda, Canon, Matsushita, NEC, 3M, GE, and the U.S. Marines, this book reveals how Japanese companies translate tacit to explicit knowledge and use it to produce new processes, products, and services.

7,448 citations