scispace - formally typeset
Search or ask a question
Author

Yi Tay

Bio: Yi Tay is an academic researcher from Google. The author has contributed to research in topics: Computer science & Feature learning. The author has an hindex of 33, co-authored 127 publications receiving 4141 citations. Previous affiliations of Yi Tay include Nanyang Technological University.

Papers published on a yearly basis

Papers
More filters
Journal Article
TL;DR: A 540-billion parameter, densely activated, Transformer language model, which is called PaLM achieves breakthrough performance, outperforming the state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark.
Abstract: Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning , which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model (PaLM). We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.

1,429 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent research efforts on deep learning-based recommender systems is provided in this paper, along with a comprehensive summary of the state-of-the-art.
Abstract: With the growing volume of online information, recommender systems have been an effective strategy to overcome information overload. The utility of recommender systems cannot be overstated, given their widespread adoption in many web applications, along with their potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also to the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. The field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning-based recommender systems. More concretely, we provide and devise a taxonomy of deep learning-based recommendation models, along with a comprehensive summary of the state of the art. Finally, we expand on current trends and provide new perspectives pertaining to this new and exciting development of the field.

1,070 citations

Posted Content
TL;DR: This paper characterizes a large and thoughtful selection of recent efficiency-flavored “X-former” models, providing an organized and comprehensive overview of existing work and models across multiple domains.
Abstract: Transformer model architectures have garnered immense interest lately due to their effectiveness across a range of domains like language, vision and reinforcement learning. In the field of natural language processing for example, Transformers have become an indispensable staple in the modern deep learning stack. Recently, a dizzying number of "X-former" models have been proposed - Reformer, Linformer, Performer, Longformer, to name a few - which improve upon the original Transformer architecture, many of which make improvements around computational and memory efficiency. With the aim of helping the avid researcher navigate this flurry, this paper characterizes a large and thoughtful selection of recent efficiency-flavored "X-former" models, providing an organized and comprehensive overview of existing work and models across multiple domains.

627 citations

Journal ArticleDOI
15 Jun 2022
TL;DR: The authors discusses an unpredictable phenomenon that is referred to as emergent abilities of large language models, i.e., an ability to be emergent if it is not present in smaller models but is present in larger models.
Abstract: Scaling up language models has been shown to predictably improve performance and sample efficiency on a wide range of downstream tasks. This paper instead discusses an unpredictable phenomenon that we refer to as emergent abilities of large language models. We consider an ability to be emergent if it is not present in smaller models but is present in larger models. Thus, emergent abilities cannot be predicted simply by extrapolating the performance of smaller models. The existence of such emergence implies that additional scaling could further expand the range of capabilities of language models.

481 citations

Journal ArticleDOI
TL;DR: This result shows that instruction and UL2 continued pre-training are complementary compute-efficient methods to improve the performance of language models without increasing model scale.
Abstract: Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.

337 citations


Cited by
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

Posted Content
TL;DR: Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference, can achieve better performance than DETR (especially on small objects) with 10$\times less training epochs.
Abstract: DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10 times less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach. Code is released at this https URL.

1,691 citations