scispace - formally typeset
Search or ask a question
Author

Yiannis Aloimonos

Bio: Yiannis Aloimonos is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Motion estimation & Motion field. The author has an hindex of 45, co-authored 287 publications receiving 6764 citations. Previous affiliations of Yiannis Aloimonos include Honda & Yale University.


Papers
More filters
Proceedings Article
27 Jul 2011
TL;DR: Experimental results show that the strategy of combining vision and language produces readable and descriptive sentences compared to naive strategies that use vision alone.
Abstract: We propose a sentence generation strategy that describes images by predicting the most likely nouns, verbs, scenes and prepositions that make up the core sentence structure. The input are initial noisy estimates of the objects and scenes detected in the image using state of the art trained detectors. As predicting actions from still images directly is unreliable, we use a language model trained from the English Gigaword corpus to obtain their estimates; together with probabilities of co-located nouns, scenes and prepositions. We use these estimates as parameters on a HMM that models the sentence generation process, with hidden nodes as sentence components and image detections as the emissions. Experimental results show that our strategy of combining vision and language produces readable and descriptive sentences compared to naive strategies that use vision alone.

396 citations

Proceedings ArticleDOI
26 May 2015
TL;DR: This work proposes two approaches for learning affordances from local shape and geometry primitives: superpixel based hierarchical matching pursuit (S-HMP); and structured random forests (SRF), and introduces a large RGB-Depth dataset where tool parts are labeled with multiple affordances and their relative rankings.
Abstract: As robots begin to collaborate with humans in everyday workspaces, they will need to understand the functions of tools and their parts. To cut an apple or hammer a nail, robots need to not just know the tool's name, but they must localize the tool's parts and identify their functions. Intuitively, the geometry of a part is closely related to its possible functions, or its affordances. Therefore, we propose two approaches for learning affordances from local shape and geometry primitives: 1) superpixel based hierarchical matching pursuit (S-HMP); and 2) structured random forests (SRF). Moreover, since a part can be used in many ways, we introduce a large RGB-Depth dataset where tool parts are labeled with multiple affordances and their relative rankings. With ranked affordances, we evaluate the proposed methods on 3 cluttered scenes and over 105 kitchen, workshop and garden tools, using ranked correlation and a weighted F-measure score [26]. Experimental results over sequences containing clutter, occlusions, and viewpoint changes show that the approaches return precise predictions that could be used by a robot. S-HMP achieves high accuracy but at a significant computational cost, while SRF provides slightly less accurate predictions but in real-time. Finally, we validate the effectiveness of our approaches on the Cornell Grasping Dataset [25] for detecting graspable regions, and achieve state-of-the-art performance.

235 citations

Proceedings Article
25 Jan 2015
TL;DR: A system that learns manipulation action plans by processing unconstrained videos from the World Wide Web to robustly generate the sequence of atomic actions of seen longer actions in video in order to acquire knowledge for robots.
Abstract: In order to advance action generation and creation in robots beyond simple learned schemas we need computational tools that allow us to automatically interpret and represent human actions. This paper presents a system that learns manipulation action plans by processing unconstrained videos from the World Wide Web. Its goal is to robustly generate the sequence of atomic actions of seen longer actions in video in order to acquire knowledge for robots. The lower level of the system consists of two convolutional neural network (CNN) based recognition modules, one for classifying the hand grasp type and the other for object recognition. The higher level is a probabilistic manipulation action grammar based parsing module that aims at generating visual sentences for robot manipulation. Experiments conducted on a publicly available unconstrained video dataset show that the system is able to learn manipulation actions by "watching" unconstrained videos with high accuracy.

202 citations

Journal ArticleDOI
TL;DR: The suggested approach for understanding behavioural vision to realize the relationships of perception and action builds on two earlier approaches, the Medusa philosophy and the Synthetic approach, and calls for synthesizing an artificial vision system by studying vision competences of increasing complexity and pursuing the integration of the perceptual components with action and learning modules.
Abstract: Our work on active vision has recently focused on the computational modelling of navigational tasks, where our investigations were guided by the idea of approaching vision for behavioural systems in the form of modules that are directly related to perceptual tasks. These studies led us to branch in various directions and inquire into the problems that have to be addressed in order to obtain an overall understanding of perceptual systems. In this paper, we present our views about the architecture of vision systems, about how to tackle the design and analysis of perceptual systems, and promising future research directions. Our suggested approach for understanding behavioural vision to realize the relationships of perception and action builds on two earlier approaches, the Medusa philosophy1 and the Synthetic approach2. The resulting framework calls for synthesizing an artificial vision system by studying vision competences of increasing complexity and, at the same time, pursuing the integration of the perceptual components with action and learning modules. We expect that computer vision research in the future will progress in tight collaboration with many other disciplines that are concerned with empirical approaches to vision, i.e. the understanding of biological vision. Throughout the paper, we describe biological findings that motivate computational arguments which we believe will influence studies of computer vision in the near future.

182 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a history of active perception in robotics, artificial intelligence and computer vision, highlighting the seminal contributions and argue that those contributions are as relevant today as they were decades ago and, with the state of modern computational tools, are poised to find new life in robotic perception systems of the next decade.
Abstract: Despite the recent successes in robotics, artificial intelligence and computer vision, a complete artificial agent necessarily must include active perception. A multitude of ideas and methods for how to accomplish this have already appeared in the past, their broader utility perhaps impeded by insufficient computational power or costly hardware. The history of these ideas, perhaps selective due to our perspectives, is presented with the goal of organizing the past literature and highlighting the seminal contributions. We argue that those contributions are as relevant today as they were decades ago and, with the state of modern computational tools, are poised to find new life in the robotic perception systems of the next decade.

180 citations


Cited by
More filters
Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Proceedings Article
06 Jul 2015
TL;DR: An attention based model that automatically learns to describe the content of images is introduced that can be trained in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound.
Abstract: Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr9k, Flickr30k and MS COCO.

6,485 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Posted Content
TL;DR: This paper proposed an attention-based model that automatically learns to describe the content of images by focusing on salient objects while generating corresponding words in the output sequence, which achieved state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.
Abstract: Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO.

5,896 citations