scispace - formally typeset
Search or ask a question
Author

Yihong Gong

Bio: Yihong Gong is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Convolutional neural network & Discriminative model. The author has an hindex of 60, co-authored 229 publications receiving 20709 citations. Previous affiliations of Yihong Gong include University of Tokyo & Nanyang Technological University.


Papers
More filters
Proceedings ArticleDOI
13 Jun 2010
TL;DR: This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM, using the locality constraints to project each descriptor into its local-coordinate system, and the projected coordinates are integrated by max pooling to generate the final representation.
Abstract: The traditional SPM approach based on bag-of-features (BoF) requires nonlinear classifiers to achieve good image classification performance. This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM. LLC utilizes the locality constraints to project each descriptor into its local-coordinate system, and the projected coordinates are integrated by max pooling to generate the final representation. With linear classifier, the proposed approach performs remarkably better than the traditional nonlinear SPM, achieving state-of-the-art performance on several benchmarks. Compared with the sparse coding strategy [22], the objective function used by LLC has an analytical solution. In addition, the paper proposes a fast approximated LLC method by first performing a K-nearest-neighbor search and then solving a constrained least square fitting problem, bearing computational complexity of O(M + K2). Hence even with very large codebooks, our system can still process multiple frames per second. This efficiency significantly adds to the practical values of LLC for real applications.

3,307 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: An extension of the SPM method is developed, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and a linear SPM kernel based on SIFT sparse codes is proposed, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors.
Abstract: Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n2 ~ n3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably reduces the complexity of SVMs to O(n) in training and a constant in testing. In a number of image categorization experiments, we find that, in terms of classification accuracy, the suggested linear SPM based on sparse coding of SIFT descriptors always significantly outperforms the linear SPM kernel on histograms, and is even better than the nonlinear SPM kernels, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors.

3,017 citations

Proceedings ArticleDOI
28 Jul 2003
TL;DR: This paper proposes a novel document clustering method based on the non-negative factorization of the term-document matrix of the given document corpus that surpasses the latent semantic indexing and the spectral clustering methods not only in the easy and reliable derivation of document clustered results, but also in document clusters accuracies.
Abstract: In this paper, we propose a novel document clustering method based on the non-negative factorization of the term-document matrix of the given document corpus. In the latent semantic space derived by the non-negative matrix factorization (NMF), each axis captures the base topic of a particular document cluster, and each document is represented as an additive combination of the base topics. The cluster membership of each document can be easily determined by finding the base topic (the axis) with which the document has the largest projection value. Our experimental evaluations show that the proposed document clustering method surpasses the latent semantic indexing and the spectral clustering methods not only in the easy and reliable derivation of document clustering results, but also in document clustering accuracies.

1,903 citations

Proceedings ArticleDOI
De Cheng1, Yihong Gong1, Sanping Zhou1, Jinjun Wang1, Nanning Zheng1 
27 Jun 2016
TL;DR: A novel multi-channel parts-based convolutional neural network model under the triplet framework for person re-identification that significantly outperforms many state-of-the-art approaches, including both traditional and deep network-based ones, on the challenging i-LIDS, VIPeR, PRID2011 and CUHK01 datasets.
Abstract: Person re-identification across cameras remains a very challenging problem, especially when there are no overlapping fields of view between cameras. In this paper, we present a novel multi-channel parts-based convolutional neural network (CNN) model under the triplet framework for person re-identification. Specifically, the proposed CNN model consists of multiple channels to jointly learn both the global full-body and local body-parts features of the input persons. The CNN model is trained by an improved triplet loss function that serves to pull the instances of the same person closer, and at the same time push the instances belonging to different persons farther from each other in the learned feature space. Extensive comparative evaluations demonstrate that our proposed method significantly outperforms many state-of-the-art approaches, including both traditional and deep network-based ones, on the challenging i-LIDS, VIPeR, PRID2011 and CUHK01 datasets.

1,265 citations

Proceedings ArticleDOI
Yihong Gong1, Xin Liu1
01 Sep 2001
TL;DR: This paper proposes two generic text summarization methods that create text summaries by ranking and extracting sentences from the original documents, and uses the latent semantic analysis technique to identify semantically important sentences, for summary creations.
Abstract: In this paper, we propose two generic text summarization methods that create text summaries by ranking and extracting sentences from the original documents. The first method uses standard IR methods to rank sentence relevances, while the second method uses the latent semantic analysis technique to identify semantically important sentences, for summary creations. Both methods strive to select sentences that are highly ranked and different from each other. This is an attempt to create a summary with a wider coverage of the document's main content and less redundancy. Performance evaluations on the two summarization methods are conducted by comparing their summarization outputs with the manual summaries generated by three independent human evaluators. The evaluations also study the influence of different VSM weighting schemes on the text summarization performances. Finally, the causes of the large disparities in the evaluators' manual summarization results are investigated, and discussions on human text summarization patterns are presented.

863 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

30,811 citations

Journal ArticleDOI
18 Jun 2018
TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Abstract: The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251 percent, surpassing the winning entry of 2016 by a relative improvement of ${\sim }$ ∼ 25 percent. Models and code are available at https://github.com/hujie-frank/SENet .

14,807 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A novel visualization technique is introduced that gives insight into the function of intermediate feature layers and the operation of the classifier in large Convolutional Network models, used in a diagnostic role to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark.
Abstract: Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark Krizhevsky et al. [18]. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we explore both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model architectures that outperform Krizhevsky et al on the ImageNet classification benchmark. We also perform an ablation study to discover the performance contribution from different model layers. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets.

12,783 citations