scispace - formally typeset
Search or ask a question
Author

Yijian Huang

Bio: Yijian Huang is an academic researcher from Shenzhen University. The author has contributed to research in topics: Photonic-crystal fiber & Fiber optic sensor. The author has an hindex of 10, co-authored 21 publications receiving 403 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results of the plasmon resonance wavelength sensitivity agree well with the theoretical results, and the presented gold-coated D-shaped PCF SPR sensor could be used as a simple, cost-effective, high sensitivity device in bio-chemical detection.
Abstract: The refractive index sensing characteristics of the side-polished photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor are detailed investigated in this paper. We used the finite element method (FEM) to study the influences of the side-polished depth, air hole size, lattice constant, and the refractive index (RI) of the PCF material on sensing performance. The simulation results show that the side-polished depth, air hole size, lattice pitch have significant influence on the coupling strength between core mode and surface plasmon polaritons (SPPs), but have little influence on sensitivity; the coupling strength and sensitivity will significant increase with the decrease of RI of the PCF material. The sensitivity of the D-shaped PCF sensor is obtained to be as high as 21700 nm/RIU in the refractive index environment of 1.33-1.34, when the RI of the PCF material is controlled at 1.36. It revealed a new method of making ultra-high sensitivity SPR fiber sensor. Then we experimental demonstrated a SPR refractive sensor based on the side-polished single mode PCF and investigated the sensing performance. The experimental results of the plasmon resonance wavelength sensitivity agree well with the theoretical results. The presented gold-coated D-shaped PCF SPR sensor could be used as a simple, cost-effective, high sensitivity device in bio-chemical detection.

152 citations

Journal ArticleDOI
TL;DR: A highly sensitive refractive index sensor based on surface plasmon resonance in a side-polished low-index polymer optical fiber is proposed for biosensing, which is expected to have potential applications in cost-effective bio- and chemical-sensing.
Abstract: A highly sensitive refractive index sensor based on surface plasmon resonance in a side-polished low-index polymer optical fiber is proposed for biosensing. Benefitting from the low refractive index of the fiber core, the sensitivity of the device can reach ~44567 nm/RIU theoretically for aqueous solutions, at the expense of a lowered upper detection limit that is down to ~1.340. The sensor is fabricated by coating 55-nm-thick Au-film on the polished surface of a graded-index perfluorinated polymer optical fiber. Results show that the sensor exhibits a sensitivity of ~22779 nm/RIU at 1.335 with a figure of merit of 61.2. When employed for glucose sensing, the sensor presents an averaged sensitivity of 24.50 nm/wt%, or 0.46 nm/mM. This device is expected to have potential applications in cost-effective bio- and chemical-sensing.

96 citations

Journal ArticleDOI
TL;DR: A compact and highly-sensitive curvature sensor based on a Mach-Zehnder interferometer created in a photonic crystal fiber that exhibited a high curvature sensitivity and a temperature sensitivity suitable for high-sensitivity curvature sensing in harsh environments is demonstrated.
Abstract: We demonstrated a compact and highly-sensitive curvature sensor based on a Mach-Zehnder interferometer created in a photonic crystal fiber. Such a Mach-Zehnder interferometer consisted of a peanut-like section and an abrupt taper achieved by use of an optimized electrical arc discharge technique, where only one dominating cladding mode was excited and interfered with the fundamental mode. The unique structure exhibited a high curvature sensitivity of 50.5 nm/m-1 within a range from 0 to 2.8 m-1, which made it suitable for high-sensitivity curvature sensing in harsh environments. Moreover, it also exhibited a temperature sensitivity of 11.7 pm/°C.

82 citations

Journal ArticleDOI
TL;DR: In this paper, a liquid modified photonic crystal fiber (PCF) integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.
Abstract: A liquid modified photonic crystal fiber (PCF) integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids. The refractive index of the filled liquid is higher than that of background silica, which can not only support the transmitting rod modes but also the “liquid modified core” modes propagating between the PCF core and the liquid rods. Hence, the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions, resulting in a dramatic decrease of the resonant wavelength intensity. Furthermore, there is a multi-mode interference produced by modified core modes and rod modes. Such a compact (∼0.91 cm) device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature (∼14.72 nm/°C) and strain (∼13.01 pm/μϵ) measurement.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a liquid-crystal-filled photonic crystal fiber (PCF) was proposed for electro-optical modulation and the E7 liquid crystal was precisely filled in one of the innermost air holes of the PCF and formed an in-fiber optical coupler, and the resonance wavelength can be tuned with a sensitivity of 5.594nm/V rms when an external voltage is applied.
Abstract: A liquid-crystal-filled photonic crystal fiber (PCF) is proposed for electro-optical modulation. The E7 liquid crystal is precisely filled in one of the innermost air holes of the PCF and forms an in-fiber optical coupler, and the resonance wavelength can be tuned with a sensitivity of 5.594 nm/ V rms when an external voltage is applied. The device can operate as an electro-optical switch/modulator and exhibits response and recovery times of approximately 47 and 24 ms, respectively from 1414 nm to more than 1700 nm. The proposed structure is expected to have potential applications in electric field sensing and wavelength-tunable electro-optical devices.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the integration of functional fluid, solid, and gaseous materials in photonic crystal fibers enables control of their linear and nonlinear properties with applications in optoelectronics, sensing, and laser science.
Abstract: Optical fibers provide much more than a means to transport light between different locations. This article reviews how integration of functional fluid, solid, and gaseous materials in photonic crystal fibers enables control of their linear and nonlinear properties with applications in optoelectronics, sensing, and laser science.

192 citations

Journal ArticleDOI
TL;DR: The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).
Abstract: Symmetrical dual D-shape photonic crystal fibers (PCFs) for surface plasmon resonance (SPR) sensing are designed and analyzed by the finite element method (FEM). The performance of the sensor is remarkably enhanced by the directional power coupling between the two fibers. We study the influence of the structural parameters on the performance of the sensor as well as the relationship between the resonance wavelengths and analyze refractive indexes between 1.36 and 1.41. An average spectral sensitivity of 14660 nm/RIU can be achieved in this sensing range and the corresponding refractive index resolution is 6.82 × 10-6 RIU. The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).

192 citations

Journal ArticleDOI
TL;DR: Fiber optic sensing technology has become mature because of acceptable costs, compact instrumentation, high accuracy and the capability of performing measurements at inaccessible sites, over large distances, in strong (electro) magnetic fields and in harsh environment.
Abstract: High-quality optical fibers can be produced now at a low cost and large quantity, and this has further promoted the development of fiber optic (chemical) sensors. After over 30 years of innovation, fiber optic sensing technology has become mature because of acceptable costs, compact instrumentation, high accuracy and the capability of performing measurements at inaccessible sites, over large distances, in strong (electro)magnetic fields and in harsh environment. The technology is still proceeding quickly in terms of innovation, and respective applications have been found in highly diversified fields. This review covers work published in the time period between October 2015 and October 2019. It is written in continuation of previous reviews.

169 citations

Journal ArticleDOI
TL;DR: In this paper, the progress made in the area of plasmonics-based fiber optic sensors during the last decade (2007-2017) has been summarized in order to widen the scope of the work.

137 citations

Journal ArticleDOI
TL;DR: In this article, a surface plasmon resonance sensor based on D-shaped photonic crystal fiber (PCF) is designed for sensing low refractive indexes, and its performance is investigated numerically by the finite element method (FEM).

130 citations