scispace - formally typeset
Search or ask a question
Author

Yijun Carrier

Bio: Yijun Carrier is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: IL-2 receptor & Interleukin 21. The author has an hindex of 8, co-authored 9 publications receiving 7518 citations.

Papers
More filters
Journal ArticleDOI
11 May 2006-Nature
TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Abstract: On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.

6,643 citations

Journal ArticleDOI
TL;DR: It is demonstrated that dendritic cells modified by Treg cells induced the generation of IL-10-producing Tr1 cells, and IL-27 and transforming growth factor-β promote the generation.
Abstract: Regulatory T cells (Treg cells) expressing the transcription factor Foxp3 are key in maintaining the balance of immune homeostasis. However, distinct induced T regulatory type 1 (Tr1) cells that lack Foxp3 expression also regulate T cell function, mainly by producing the immunosuppressive cytokine interleukin 10 (IL-10). However, the factors required for the induction of IL-10-producing suppressive T cells are not fully understood. Here we demonstrate that dendritic cells modified by Treg cells induced the generation of IL-10-producing Tr1 cells. The differentiation of naive CD4+ T cells into IL-10-producing cells was mediated by IL-27 produced by the Treg cell–modified dendritic cells, and transforming growth factor-β amplified the generation of induced IL-10+ Tr1 cells by IL-27. Thus, IL-27 and transforming growth factor-β promote the generation of IL-10-producing Tr1 cells.

777 citations

Journal ArticleDOI
TL;DR: It was found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4+CD25− T cells from TGF-β Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25+ and CD25− populations.
Abstract: TGF-β has been shown to be critical in the generation of CD4+CD25+Foxp3+ regulatory T cells (Tregs). Because Th3 cells produce large amounts of TGF-β, we asked whether induction of Th3 cells in the periphery was a mechanism by which CD4+CD25+ Tregs were induced in the peripheral immune compartment. To address this issue, we generated a TGF-β1-transgenic (Tg) mouse in which TGF-β is linked to the IL-2 promoter and T cells transiently overexpress TGF-β upon TCR stimulation but produce little or no IL-2, IL-4, IL-10, IL-13, or IFN-γ. Naive TGF-β-Tg mice are phenotypically normal with comparable numbers of lymphocytes and thymic-derived Tregs. We found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4+CD25− T cells from TGF-β Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25+ and CD25− populations. Both CD25 subsets were anergic and had potent suppressive properties in vitro and in vivo. Furthermore, adoptive transfer of these induced regulatory CD25+/− T cells suppressed experimental autoimmune encephalomyelitis when administrated before disease induction or during ongoing experimental autoimmune encephalomyelitis. The suppressive effect of TGF-β on T cell responses was due to the induction of Tregs and not to the direct inhibition of cell proliferation. The differentiation of Th3 cells in vitro was TGF-β dependent as anti-TGF-β abrogated their development. Thus, Ag-specific TGF-β-producing Th3 cells play a crucial role in inducing and maintaining peripheral tolerance by driving the differentiation of Ag-specific Foxp3+ regulatory cells in the periphery.

224 citations

Journal ArticleDOI
TL;DR: It is proposed that downstream of its expression and impact in local tissue inflammation, circulating IL-22 can further induce changes in systemic physiology that is indicative of an acute-phase response.
Abstract: IL-22 is made by a unique set of innate and adaptive immune cells, including the recently identified noncytolytic NK, lymphoid tissue-inducer, Th17, and Th22 cells. The direct effects of IL-22 are restricted to nonhematopoietic cells, its receptor expressed on the surface of only epithelial cells and some fibroblasts in various organs, including parenchymal tissue of the gut, lung, skin, and liver. Despite this cellular restriction on IL-22 activity, we demonstrate that IL-22 induces effects on systemic biochemical, cellular, and physiological parameters. By utilizing adenoviral-mediated delivery of IL-22 and systemic administration of IL-22 protein, we observed that IL-22 modulates factors involved in coagulation, including fibrinogen levels and platelet numbers, and cellular constituents of blood, such as neutrophil and RBC counts. Furthermore, we observed that IL-22 induces thymic atrophy, body weight loss, and renal proximal tubule metabolic activity. These cellular and physiological parameters are indicative of a systemic inflammatory state. We observed that IL-22 induces biochemical changes in the liver including induction of fibrinogen, CXCL1, and serum amyloid A that likely contribute to the reported cellular and physiological effects of IL-22. Based on these findings, we propose that downstream of its expression and impact in local tissue inflammation, circulating IL-22 can further induce changes in systemic physiology that is indicative of an acute-phase response.

165 citations

Journal ArticleDOI
TL;DR: The results suggest that TGF-β-derived Foxp3+CD25+/− Th3 regulatory cells represent a different cell lineage from thymic-derived CD25+ Tregs in the periphery but may play an important role in maintainingTh3 cell differentiation in the peripheral immune compartment by secretion of T GF-β.
Abstract: We developed a transgenic (Tg) mouse that expresses TGF-beta under control of the IL-2 promoter to investigate Th3 cell differentiation both in vitro and in vivo. We previously found that repetitive in vitro Ag stimulation results in constant expression of Foxp3 in TGF-beta-Tg Th3 cells that acquire regulatory function independent of surface expression of CD25. To examine the differentiation and function of Th3 cells in vivo and to compare them with thymic-derived CD4(+)CD25(+) regulatory T cells (Treg), we introduced the TGF-beta transgene into T cells of IL-2-deficient (IL-2(-/-)) mice. We found that the induction, differentiation, and function of TGF-beta-derived Foxp3(+) Th3 cells were independent of IL-2, which differs from thymic Tregs. In an environment that lacks functional CD25(+) thymic-derived Tregs, expression of the TGF-beta transgene in IL-2(-/-) mice led to the induction of distinct CD25(-) regulatory cells in the periphery. These cells expressed Foxp3 and efficiently controlled hyperproliferation of T cells and rescued the IL-2(-/-) mouse from lethal autoimmunity. Unlike IL-2(-/-) animals, TGF-beta/IL-2(-/-) mice had normal numbers of T cells, B cells, macrophages, and dendritic cells and did not have splenomegaly, lymphadenopathy, or inflammation in multiple organs. Accumulation of Foxp3(+) cells over time, however, was dependent on IL-2. Our results suggest that TGF-beta-derived Foxp3(+)CD25(+/-) Th3 regulatory cells represent a different cell lineage from thymic-derived CD25(+) Tregs in the periphery but may play an important role in maintaining thymic Tregs in the peripheral immune compartment by secretion of TGF-beta.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review suggests a new grouping of macrophages based on three different homeostatic activities — host defence, wound healing and immune regulation, and proposes that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation.
Abstract: Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.

7,384 citations

Journal ArticleDOI
22 Sep 2006-Cell
TL;DR: It is shown that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage of proinflammatory T helper cells and its potential as a therapeutic target in inflammatory diseases is highlighted.

4,616 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations

Journal ArticleDOI
30 May 2008-Cell
TL;DR: The cellular and molecular basis of Treg development and function is revealed and dysregulation of T Regs in immunological disease is implicates.

4,427 citations

Journal ArticleDOI
TL;DR: This review summarizes the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Abstract: CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.

2,978 citations