scispace - formally typeset
Search or ask a question
Author

Yijun Lin

Bio: Yijun Lin is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Alcator C-Mod & Tokamak. The author has an hindex of 12, co-authored 33 publications receiving 691 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the edge gradients in EDA seem to be relaxed by a continuous process rather than an intermittent one as is the case for standard ELMy discharges and thus do not present the first wall with large periodic heat loads.
Abstract: Regimes of high-confinement mode have been studied in the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. Plasmas with no edge localized modes (ELM-free) have been compared in detail to a new regime, enhanced Dα (EDA). EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. The edge gradients in EDA seem to be relaxed by a continuous process rather than an intermittent one as is the case for standard ELMy discharges and thus do not present the first wall with large periodic heat loads. This process is probably related to fluctuations seen in the plasma edge. EDA plasmas are more likely at low plasma current (q>3.7), for moderate plasma shaping, (triangularity ∼0.35–0.55), and for high neutral pressures. As observed in soft x-ray emission, the pedestal width is found to scale with the same parameters that determine the EDA/ELM-free boundary.

189 citations

Journal ArticleDOI
TL;DR: In this article, double transport barrier plasmas comprised of an edge enhanced D? (EDA) H-mode pedestal and an internal transport barrier (ITB) have been observed in Alcator C-Mod.
Abstract: Double transport barrier plasmas comprised of an edge enhanced D? (EDA) H-mode pedestal and an internal transport barrier (ITB) have been observed in Alcator C-Mod. The ITB can be routinely produced in ICRF heated plasmas by locating the wave resonance off-axis near |r/a|~0.5, provided the target plasma average density is above ~1.4?1020?m-3, and can develop spontaneously in some Ohmic H-mode discharges. The formation of the barrier appears in conjunction with a decrease or reversal in the central (impurity) toroidal rotation velocity. The ITB foot is located near r/a~0.5, regardless of how the barrier was produced. The ITBs can persist for ~15 energy confinement times (?E), but exhibit a continuous increase of the central electron density, up to values near 1?1021?m-3 (in the absence of an internal particle source), followed by collapse of the barrier. Application of additional on-axis ICRF heating arrests the density and impurity peaking, which occurs along with an increase (co-current) in the core rotation velocity. Quasi-steady state double barrier plasmas have been maintained for 10?E or longer, with a bootstrap fraction of 0.13 near the ITB foot.

98 citations

Journal ArticleDOI
TL;DR: In this paper, a parallel high-Z impurity transport theory is extended to account for cyclotron effects and shown to agree with experimentally measured impurity density asymmetries.
Abstract: In the Alcator C-Mod tokamak, strong, steady-state variations of molybdenum density within a flux surface are routinely observed in plasmas using hydrogen minority ion cyclotron resonant heating. In/out asymmetries, up to a factor of 2, occur with either inboard or outboard accumulation depending on the major radius of the minority resonance layer. These poloidal variations can be attributed to the impurity's high charge and large mass in the neoclassical parallel force balance. The large mass enhances the centrifugal force, causing outboard accumulation while the high charge enhances ion-impurity friction and makes impurities sensitive to small poloidal variations in the plasma potential. Quantitative comparisons between existing parallel high-Z impurity transport theories and experimental results for r/a < 0.7 show good agreement when the resonance layer is on the high-field side of the tokamak but disagree substantially for low-field side heating. Ion-impurity friction is insufficient to explain the experimental results, and the accumulation of impurity density on the inboard side of flux surface is shown to be driven by a poloidal potential variation due to magnetic trapping of non-thermal, cyclotron heated minority ions. Parallel impurity transport theory is extended to account for cyclotron effects and shown to agree with experimentally measured impurity density asymmetries.

70 citations

Journal ArticleDOI
TL;DR: In this article, a phase screen model for the general cases and the results are supported by detailed numerical 2-D realistic geometry full wave simulations for the specific case of the Alcator C-Mod tokamak.
Abstract: Plasma poloidal curvature can significantly extend microwave reflectometry responses to high k⊥ poloidal fluctuations. Reflectometry responses can be several orders of magnitude larger at high k⊥ than that predicted by analysis based on two dimensional (2-D) slab geometry. As a result, the responses may approach the 1-D geometrical optics limit. This superresolution leads to a major modification of the spectral resolution of reflectometry. The phenomenon is analysed using a phase screen model for the general cases and the results are supported by detailed numerical 2-D realistic geometry full wave simulations for the specific case of the Alcator C-Mod tokamak.

65 citations

01 Mar 2012
TL;DR: In this paper, a parallel high-Z impurity transport theory is extended to account for cyclotron effects and shown to agree with experimentally measured impurity density asymmetries.
Abstract: In the Alcator C-Mod tokamak, strong, steady-state variations of molybdenum density within a flux surface are routinely observed in plasmas using hydrogen minority ion cyclotron resonant heating. In/out asymmetries, up to a factor of 2, occur with either inboard or outboard accumulation depending on the major radius of the minority resonance layer. These poloidal variations can be attributed to the impurity's high charge and large mass in the neoclassical parallel force balance. The large mass enhances the centrifugal force, causing outboard accumulation while the high charge enhances ion-impurity friction and makes impurities sensitive to small poloidal variations in the plasma potential. Quantitative comparisons between existing parallel high-Z impurity transport theories and experimental results for r/a < 0.7 show good agreement when the resonance layer is on the high-field side of the tokamak but disagree substantially for low-field side heating. Ion-impurity friction is insufficient to explain the experimental results, and the accumulation of impurity density on the inboard side of flux surface is shown to be driven by a poloidal potential variation due to magnetic trapping of non-thermal, cyclotron heated minority ions. Parallel impurity transport theory is extended to account for cyclotron effects and shown to agree with experimentally measured impurity density asymmetries.

62 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER and compare their predictions with the new experimental results.
Abstract: Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137–2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma–materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral–neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma–materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.

943 citations

Journal ArticleDOI
TL;DR: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions.
Abstract: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has been made in understanding, controlling and predicting tokamak transport across a wide variety of plasma conditions and regimes since the publication of the ITER Physics Basis (IPB) document (1999 Nucl. Fusion 39 2137-2664). Major areas of progress considered here follow. (1) Substantial improvement in the physics content, capability and reliability of transport simulation and modelling codes, leading to much increased theory/experiment interaction as these codes are increasingly used to interpret and predict experiment. (2) Remarkable progress has been made in developing and understanding regimes of improved core confinement. Internal transport barriers and other forms of reduced core transport are now routinely obtained in all the leading tokamak devices worldwide. (3) The importance of controlling the H-mode edge pedestal is now generally recognized. Substantial progress has been made in extending high confinement H-mode operation to the Greenwald density, the demonstration of Type I ELM mitigation and control techniques and systematic explanation of Type I ELM stability. Theory-based predictive capability has also shown progress by integrating the plasma and neutral transport with MHD stability. (4) Transport projections to ITER are now made using three complementary approaches: empirical or global scaling, theory-based transport modelling and dimensionless parameter scaling (previously, empirical scaling was the dominant approach). For the ITER base case or the reference scenario of conventional ELMy H-mode operation, all three techniques predict that ITER will have sufficient confinement to meet its design target of Q = 10 operation, within similar uncertainties.

798 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations

Journal ArticleDOI
TL;DR: In this paper, a model based on magnetohydrodynamic stability of the tokamak plasma edge region is presented, which describes characteristics of edge localized modes (ELMs) and the pedestal.
Abstract: A model based on magnetohydrodynamic (MHD) stability of the tokamak plasma edge region is presented, which describes characteristics of edge localized modes (ELMs) and the pedestal. The model emphasizes the dual role played by large bootstrap currents driven by the sharp pressure gradients in the pedestal region. Pedestal currents reduce the edge magnetic shear, stabilizing high toroidal mode number (n) ballooning modes, while at the same time providing drive for intermediate to low n peeling modes. The result is that coupled peeling–ballooning modes at intermediate n (3

684 citations