scispace - formally typeset
Search or ask a question
Author

Yiming Li

Bio: Yiming Li is an academic researcher from Stanford University. The author has contributed to research in topics: Carbon nanotube & Nanotube. The author has an hindex of 11, co-authored 12 publications receiving 6354 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An exploration of single-walled carbon nanotubes is presented as a platform for investigating surface–protein and protein–protein binding and developing highly specific electronic biomolecule detectors for detecting clinically important biomolecules such as antibodies associated with human autoimmune diseases.
Abstract: Novel nanomaterials for bioassay applications represent a rapidly progressing field of nanotechnology and nanobiotechnology. Here, we present an exploration of single-walled carbon nanotubes as a platform for investigating surface-protein and protein-protein binding and developing highly specific electronic biomolecule detectors. Nonspecific binding on nanotubes, a phenomenon found with a wide range of proteins, is overcome by immobilization of polyethylene oxide chains. A general approach is then advanced to enable the selective recognition and binding of target proteins by conjugation of their specific receptors to polyethylene oxide-functionalized nanotubes. This scheme, combined with the sensitivity of nanotube electronic devices, enables highly specific electronic sensors for detecting clinically important biomolecules such as antibodies associated with human autoimmune diseases.

1,451 citations

Journal ArticleDOI
Woong Kim1, Ali Javey1, Ophir Vermesh1, Qian Wang1, Yiming Li1, Hongjie Dai1 
TL;DR: In this paper, it was shown that the transistors exhibit hysteresis in their electrical characteristics because of charge trapping by water molecules around the nanotubes, including SiO2 surface-bound water proximal to the nanotsubes.
Abstract: Carbon nanotube field-effect transistors commonly comprise nanotubes lying on SiO2 surfaces exposed to the ambient environment. It is shown here that the transistors exhibit hysteresis in their electrical characteristics because of charge trapping by water molecules around the nanotubes, including SiO2 surface-bound water proximal to the nanotubes. Hysteresis persists for the transistors in vacuum since the SiO2-bound water does not completely desorb in vacuum at room temperature, a known phenomenon in SiO2 surface chemistry. Heating under dry conditions significantly removes water and reduces hysteresis in the transistors. Nearly hysteresis-free transistors are obtainable by passivating the devices with polymers that hydrogen bond with silanol groups on SiO2 (e.g., with poly(methyl methacrylate) (PMMA)). However, nanotube humidity sensors could be explored with suitable water-sensitive coatings. The results may have implications to field-effect transistors made from other chemically derived materials.

962 citations

Journal ArticleDOI
Moonsub Shim1, Nadine Wong Shi Kam1, Robert Chen1, Yiming Li1, Hongjie Dai1 
TL;DR: The streptavidin/biotin system is used to investigate the adsorption behavior of proteins on the sides of single-walled carbon nanotubes (SWNTs) and the results have implications to the nanotube biocompatibility 11 issue and specificity of potential bioelectronic devices based on nanot tubes.
Abstract: The interface between biological molecules and novel nanomaterials is important to developing new types of miniature devices for biological applications. Here, the streptavidin/biotin system is used to investigate the adsorption behavior of proteins on the sides of single-walled carbon nanotubes (SWNTs). Functionalization of SWNTs by coadsorption of a surfactant and poly(ethylene glycol) is found to be effective in resisting nonspecific adsorption of streptavidin. Specific binding of streptavidin onto SWNTs is achieved by co-functionalization of nanotubes with biotin and protein-resistant polymers. Recent years have witnessed a significant interest in biological applications of novel solid-state nanomaterials. 1-6 The unique physical properties of molecular- or nanoscale solids (dots or wires) when utilized in conjunction with the remarkable biomolecular recognition capabilities could lead to miniature biological electronics and optical devices including probes and sensors. Not only could these devices exhibit advantages over existing technology in size but also in performance. Several issues are important regarding nanomaterial/biosystems. One of them is biocompatibility, especially for in-vivo applications of implantable bioelectronic devices. Another is specificity that requires biofunctionalization of nanomaterials for recognition of only one type of target biomolecule in solution and rejection of others. Central to tackling these issues is surface functionalization of nanomaterials and elucidating the interfaces and interactions between nanomaterials and biosystems. Single-walled carbon nanotubes (SWNTs) are novel molecular scale wires exhibiting useful properties for various potential applications including miniature biological devices. For instance, nanotubes can be used as electrodes for detecting biomolecules in solutions, similar to commonly used conventional carbon based electrode materials. Also, the electrical properties of SWNTs are sensitive to surface charge transfer and changes in the surrounding electrostatic environment, undergoing drastic changes by simple adsorptions of certain molecules or polymers. 7-10 SWNTs are therefore promising for chemical sensors for detecting molecules in the gas phase and biosensors for probing biological processes in solutions. Nevertheless, significant effort is required in order to understand interactions between nanotubes and biomolecules and how to impart specificity and selectivity to nanotube-based bioelectronic devices. Motivated by the biological application prospects of solidstate nanomaterials, this work investigates (1) nonspecific binding (NSB) of proteins to SWNTs, (2) functionalization of nanotubes for resisting nonspecific interactions, and (3) enabling specific binding of proteins to functionalized nanotubes. We find that streptavidin nonspecifically binds to as-grown SWNTs and show that prevention of NSB of streptavidin on SWNTs is achieved by coating nanotubes with a surfactant and poly(ethylene glycol), PEG. Selective binding of streptavidin is introduced by co-functionalization of SWNTs with PEG and biotin. The results have implications to the nanotube biocompatibility 11 issue and specificity of potential bioelectronic devices based on nanotubes. In an earlier communication, we have shown that protein binding to SWNTs is reliably enabled via a noncovalent sidewall functionalization scheme. 5 In this manner, a variety

887 citations

Journal ArticleDOI
TL;DR: In this article, the diameters of single-walled carbon nanotubes are determined by their diameters in the cores of catalytic nanoparticles with diameters between 1−2 nm and 3−5 nm.
Abstract: Discrete catalytic nanoparticles with diameters in the range of 1−2 nm and 3−5 nm respectively are obtained by placing controllable numbers of metal atoms into the cores of apoferritin, and used for growth of single-walled carbon nanotube (SWNTs) on substrates by chemical vapor deposition (CVD). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and micro-Raman spectroscopy are used to characterize isolated nanotubes grown from the discrete nanoparticles. The characterizations, carried out at single-tube and single-particle level, obtain clear evidence that the diameters of nanotubes are determined by the diameters of catalytic nanoparticles. With nanoparticles placed on ultrathin alumina membranes, isolated SWNTs are grown and directly examined by transmission electron microscopy. For the first time, both ends of an as-grown single-walled nanotube are imaged by TEM, leading to a microscopic picture of nanotube growth mechanism. It is shown that controlling the structures of catalytic ...

805 citations

Journal ArticleDOI
TL;DR: In this article, an electric field-directed growth of single-walled carbon nanotubes by chemical-vapor deposition is demonstrated, and the field alignment effect originates from the high polarizability of singlewalled nanotsubes.
Abstract: Electric-field-directed growth of single-walled carbon nanotubes by chemical-vapor deposition is demonstrated. The field-alignment effect originates from the high polarizability of single-walled nanotubes. Large induced dipole moments lead to large aligning torques and forces on the nanotube, and prevent randomization of nanotube orientation by thermal fluctuations and gas flows. The results shall open up possibilities in directed growth of ordered molecular-wire architectures and networks on surfaces.

666 citations


Cited by
More filters
Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
TL;DR: Nathaniel L. Rosi focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials and their roles in biodiagnostic screening for nucleic acids.
Abstract: In the last 10 years the field of molecular diagnostics has witnessed an explosion of interest in the use of nanomaterials in assays for gases, metal ions, and DNA and protein markers for many diseases. Intense research has been fueled by the need for practical, robust, and highly sensitive and selective detection agents that can address the deficiencies of conventional technologies. Chemists are playing an important role in designing and fabricating new materials for application in diagnostic assays. In certain cases assays based upon nanomaterials have offered significant advantages over conventional diagnostic systems with regard to assay sensitivity, selectivity, and practicality. Some of these new methods have recently been reviewed elsewhere with a focus on the materials themselves or as subclassifications in more generalized overviews of biological applications of nanomaterials.1-7 We intend to review some of the major advances and milestones in the field of detection systems based upon nanomaterials and their roles in biodiagnostic screening for nucleic acids, * To whom correspondence should be addressed. Phone: 847-4913907. Fax: 847-467-5123. E-mail: chadnano@northwestern.edu. Nathaniel L. Rosi earned his B.A. degree at Grinnell College (1999) and his Ph.D. degree from the University of Michigan (2003), where he studied the design, synthesis, and gas storage applications of metal−organic frameworks under the guidance of Professor Omar M. Yaghi. In 2003 he began postdoctoral studies as a member of Professor Mirkin’s group at Northwestern University. His current research focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials.

4,308 citations

Journal ArticleDOI
TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
Abstract: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

4,241 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations