scispace - formally typeset
Search or ask a question
Author

Yin Wu

Bio: Yin Wu is an academic researcher from Tsinghua University. The author has contributed to research in topics: Etching (microfabrication) & Scalability. The author has an hindex of 9, co-authored 14 publications receiving 2490 citations. Previous affiliations of Yin Wu include Indiana University & National University of Singapore.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel strategy for preparing large-area oriented silicon nanowire arrays on silicon substrates at near room temperature by localized chemical etching is presented, which is based on metal-induced (either by Ag or Au) excessive local oxidation and dissolution of a silicon substrate in an aqueous fluoride solution.
Abstract: A novel strategy for preparing large-area, oriented silicon nanowire (SiNW) arrays on silicon substrates at near room temperature by localized chemical etching is presented. The strategy is based on metal-induced (either by Ag or Au) excessive local oxidation and dissolution of a silicon substrate in an aqueous fluoride solution. The density and size of the as-prepared SiNWs depend on the distribution of the patterned metal particles on the silicon surface. High-density metal particles facilitate the formation of silicon nanowires. Well-separated, straight nanoholes are dug along the Si block when metal particles are well dispersed with a large space between them. The etching technique is weakly dependent on the orientation and doping type of the silicon wafer. Therefore, SiNWs with desired axial crystallographic orientations and doping characteristics are readily obtained. Detailed scanning electron microscopy observations reveal the formation process of the silicon nanowires, and a reasonable mechanism is proposed on the basis of the electrochemistry of silicon and the experimental results.

650 citations

Journal ArticleDOI
TL;DR: The etching process features weak dependence on the doping of the silicon wafers and, thus, provides an efficient method to prepare silicon nanowires with desirable doping characteristics.
Abstract: A straightforward metal-particle-induced, highly localized site-specific corrosion-like mechanism was proposed for the formation of aligned silicon-nanowire arrays on silicon in aqueous HF/AgNO3 solution on the basis of convincing experimental results. The etching process features weak dependence on the doping of the silicon wafers and, thus, provides an efficient method to prepare silicon nanowires with desirable doping characteristics. The novel electrochemical properties between silicon and active noble metals should be useful for preparing novel silicon nanostructures and also new optoelectronic devices.

278 citations

Journal ArticleDOI
TL;DR: In this article, a method involving dry deposition plus wet chemical etching was devised to fabricate silicon nanowire (SiNW) arrays and to study silver catalysis during fabrication.
Abstract: A method involving dry deposition plus wet chemical etching was devised to fabricate silicon nanowire (SiNW) arrays and to study silver catalysis during fabrication. Through investigation of the track of catalyst particles, it was shown that Ag really catalyses the etching of silicon underneath Ag, which clarifies doubts about the formation of SiNW arrays during wet chemical etching. The intrinsic properties of Ag and the network structure of Ag clusters during etching facilitate the etching process. The etching product, i.e. vertical SiNW arrays containing an Ag nanocluster mesh, could be considered as a prototype secondary composite nanostructured catalyst with promise for future applications.

181 citations


Cited by
More filters
Journal ArticleDOI
10 Jan 2008-Nature
TL;DR: In this article, the authors report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter.
Abstract: Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

3,611 citations

Journal Article
TL;DR: Electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20–300 nm in diameter show promise as high-performance, scalable thermoelectric materials.
Abstract: Approximately 90 per cent of the world’s power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30–40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2–4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20–300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

2,932 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ordered arrays of silicon nanowires increase the path length of incident solar radiation by up to a factor of 73, which is above the randomized scattering (Lambertian) limit and is superior to other light-trapping methods.
Abstract: Thin-film structures can reduce the cost of solar power by using inexpensive substrates and a lower quantity and quality of semiconductor material. However, the resulting short optical path length and minority carrier diffusion length necessitates either a high absorption coefficient or excellent light trapping. Semiconducting nanowire arrays have already been shown to have low reflective losses compared to planar semiconductors, but their light-trapping properties have not been measured. Using optical transmission and photocurrent measurements on thin silicon films, we demonstrate that ordered arrays of silicon nanowires increase the path length of incident solar radiation by up to a factor of 73. This extraordinary light-trapping path length enhancement factor is above the randomized scattering (Lambertian) limit (2n2 ∼ 25 without a back reflector) and is superior to other light-trapping methods. By changing the silicon film thickness and nanowire length, we show that there is a competition between impr...

2,115 citations

Journal ArticleDOI
TL;DR: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching, and introduces templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithographic, and block-copolymer masks.
Abstract: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching. First, the basic process and mechanism of metal-assisted chemical etching is introduced. Then, the various influences of the noble metal, the etchant, temperature, illumination, and intrinsic properties of the silicon substrate (e.g., orientation, doping type, doping level) are presented. The anisotropic and the isotropic etching behaviors of silicon under various conditions are presented. Template-based metal-assisted chemical etching methods are introduced, including templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithography, and block-copolymer masks. The metal-assisted chemical etching of other semiconductors is also introduced. A brief introduction to the application of Si nanostructures obtained by metal-assisted chemical etching is given, demonstrating the promising potential applications of metal-assisted chemical etching. Finally, some open questions in the understanding of metal-assisted chemical etching are compiled.

1,689 citations

Journal ArticleDOI
TL;DR: In this article, the most recent advance in the applications of 0D (nanoparticles), 1D(nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in lithium-ion batteries are summarized.
Abstract: There are growing concerns over the environmental, climate, and health impacts caused by using non-renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium-ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid-electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.

1,365 citations