scispace - formally typeset
Search or ask a question
Author

Yin Zhang

Bio: Yin Zhang is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Radar & Radar imaging. The author has an hindex of 35, co-authored 273 publications receiving 4960 citations. Previous affiliations of Yin Zhang include Huazhong University of Science and Technology & Nanjing University.


Papers
More filters
Journal ArticleDOI
TL;DR: The results of this study show that the technologies of cloud and big data can be used to enhance the performance of the healthcare system so that humans can then enjoy various smart healthcare applications and services.
Abstract: The advances in information technology have witnessed great progress on healthcare technologies in various domains nowadays. However, these new technologies have also made healthcare data not only much bigger but also much more difficult to handle and process. Moreover, because the data are created from a variety of devices within a short time span, the characteristics of these data are that they are stored in different formats and created quickly, which can, to a large extent, be regarded as a big data problem. To provide a more convenient service and environment of healthcare, this paper proposes a cyber-physical system for patient-centric healthcare applications and services, called Health-CPS, built on cloud and big data analytics technologies. This system consists of a data collection layer with a unified standard, a data management layer for distributed storage and parallel computing, and a data-oriented service layer. The results of this study show that the technologies of cloud and big data can be used to enhance the performance of the healthcare system so that humans can then enjoy various smart healthcare applications and services.

682 citations

Journal ArticleDOI
TL;DR: A convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning.
Abstract: At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer aided diagnosis (CAD) based on artificial intelligence (AI) recently exhibits its importance in intelligent healthcare. However, it is a great challenge to establish an adequate labeled dataset for CT analysis assistance, due to the privacy and security issues. Therefore, this paper proposes a convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning. Through comprehensive experiments, it shows that the proposed scheme is superior to other approaches, which effectively solves the intrinsic labor-intensive problem during artificial image labeling. Moreover, it verifies that the proposed convolutional autoencoder approach can be extended for similarity measurement of lung nodules images. Especially, the features extracted through unsupervised learning are also applicable in other related scenarios.

345 citations

Journal ArticleDOI
TL;DR: This paper brings convolutional neural networks power to DR detection, which includes 3 major difficult challenges: classification, segmentation and detection, and adopts AlexNet, VggNet, GoogleNet, ResNet, and analyze how well these models do with the DR image classification.

295 citations

Journal ArticleDOI
TL;DR: A Wearable 2.0 healthcare system to improve QoE and QoS of the next generation healthcare system is proposed and washable smart clothing is the critical component to collect users' physiological data and receive the analysis results of users’ health and emotional status provided by cloud-based machine intelligence.
Abstract: With the rapid development of the Internet of Things, cloud computing, and big data, more comprehensive and powerful applications become available. Meanwhile, people pay more attention to higher QoE and QoS in a “terminal- cloud” integrated system. Specifically, both advanced terminal technologies (e.g., smart clothing) and advanced cloud technologies (e.g., big data analytics and cognitive computing in clouds) are expected to provide people with more reliable and intelligent services. Therefore, in this article we propose a Wearable 2.0 healthcare system to improve QoE and QoS of the next generation healthcare system. In the proposed system, washable smart clothing, which consists of sensors, electrodes, and wires, is the critical component to collect users’ physiological data and receive the analysis results of users’ health and emotional status provided by cloud-based machine intelligence.

260 citations

Journal ArticleDOI
TL;DR: The experimental results show that iDoctor provides a higher predication rating and increases the accuracy of healthcare recommendation significantly, and is compared with previous healthcare recommendation methods using real datasets.

203 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a state-of-the-art review that presents a holistic view of the BD challenges and BDA methods theorized/proposed/employed by organizations to help others understand this landscape with the objective of making robust investment decisions.

1,267 citations

16 Mar 1993
TL;DR: Giant and isotropic magnetoresistance as huge as −53% was observed in magnetic manganese oxide La0.72Ca0.25MnOz films with an intrinsic antiferromagnetic spin structure as discussed by the authors.
Abstract: Giant and isotropic magnetoresistance as huge as −53% was observed in magnetic manganese oxide La0.72Ca0.25MnOz films with an intrinsic antiferromagnetic spin structure. We ascribe this magnetoresistance to spin‐dependent electron scattering due to spin canting of the manganese oxide.

924 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain.
Abstract: In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.

903 citations

Journal ArticleDOI
TL;DR: An App (called Healthcare Data Gateway (HGD) architecture based on blockchain is proposed to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private.
Abstract: Healthcare data are a valuable source of healthcare intelligence. Sharing of healthcare data is one essential step to make healthcare system smarter and improve the quality of healthcare service. Healthcare data, one personal asset of patient, should be owned and controlled by patient, instead of being scattered in different healthcare systems, which prevents data sharing and puts patient privacy at risks. Blockchain is demonstrated in the financial field that trusted, auditable computing is possible using a decentralized network of peers accompanied by a public ledger. In this paper, we proposed an App (called Healthcare Data Gateway (HGD)) architecture based on blockchain to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private. Our proposed purpose-centric access model ensures patient own and control their healthcare data; simple unified Indicator-Centric Schema (ICS) makes it possible to organize all kinds of personal healthcare data practically and easily. We also point out that MPC (Secure Multi-Party Computing) is one promising solution to enable untrusted third-party to conduct computation over patient data without violating privacy.

884 citations