scispace - formally typeset
Search or ask a question
Author

Yinan Yu

Bio: Yinan Yu is an academic researcher. The author has contributed to research in topics: Radiometer & Black body. The author has an hindex of 2, co-authored 2 publications receiving 28 citations.
Topics: Radiometer, Black body, Daytime, Radiance, CubeSat

Papers
More filters
Journal ArticleDOI
TL;DR: The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat mission is a pathfinder to demonstrate technologies for the measurement of Earth’s radiation budget, the quantification of which is critical for predicting the future course of climate change.
Abstract: The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat mission is a pathfinder to demonstrate technologies for the measurement of Earth’s radiation budget, the quantification of which is critical for predicting the future course of climate change. A specific motivation is the need for lower-cost technology alternatives that could be used for multi-point constellation measurements of Earth outgoing radiation. RAVAN launched 11 November 2016, into a nearly 600-km, Sun-synchronous orbit, and collected data for over 20 months. RAVAN successfully demonstrates two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as absorbers in broadband radiometers for measuring Earth’s outgoing radiation and the total solar irradiance. VACNT forests are arguably the blackest material known and have an extremely flat spectral response over a wide wavelength range, from the ultraviolet to the far infrared. As radiometer absorbers, they have greater sensitivity for a given time constant and are more compact than traditional cavity absorbers. The second technology demonstrated is a pair of gallium phase-change black body cells that are used as a stable reference to monitor the degradation of RAVAN’s radiometer sensors on orbit. Four radiometers (two VACNT, two cavity), the pair of gallium black bodies, and associated electronics are accommodated in the payload of an agile 3U CubeSat bus that allows for routine solar and deep-space attitude maneuvers, which are essential for calibrating the Earth irradiance measurements. The radiometers show excellent long-term stability over the course of the mission and a high correlation between the VACNT and cavity radiometer technologies. Short-term variability—at greater than the tenths-of-a-Watt/m2 needed for climate accuracy—is a challenge that remains, consistent with insufficient thermal knowledge and control on a 3U CubeSat. There are also VACNT–cavity biases of 3% and 6% in the Total and SW channels, respectively, which would have to be overcome in a future mission. Although one of the black bodies failed after four months, the other provided a repeatable standard for the duration of the project. We present representative measurements from the mission and demonstrate how the radiometer time series can be used to reconstruct outgoing radiation spatial information. Improvements to the technology and approach that would lead to better performance and greater accuracy in future missions are discussed.

24 citations

Journal ArticleDOI
TL;DR: In this paper, an unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance database calculated for typical Earth scenes, which was then converted to full-disk daytime SW and LW flux by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances.
Abstract: . The National Institute of Standards and Technology Advanced Radiometer (NISTAR) onboard the Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measure the total radiant energy from the sunlit side of the Earth in shortwave (SW; 0.2–4 µ m), total (0.4–100 µ m), and near-infrared (NIR; 0.7–4 µ m) channels. The Level 1 NISTAR dataset provides the filtered radiances (the ratio between irradiance and solid angle). To determine the daytime top-of-atmosphere (TOA) shortwave and longwave radiative fluxes, the NISTAR-measured shortwave radiances must be unfiltered first. An unfiltering algorithm was developed for the NISTAR SW and NIR channels using a spectral radiance database calculated for typical Earth scenes. The resulting unfiltered NISTAR radiances are then converted to full-disk daytime SW and LW flux by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. The anisotropy factors are determined using scene identifications determined from multiple low-Earth orbit and geostationary satellites as well as the angular distribution models (ADMs) developed using data collected by the Clouds and the Earth's Radiant Energy System (CERES). Global annual daytime mean SW fluxes from NISTAR are about 6 % greater than those from CERES, and both show strong diurnal variations with daily maximum–minimum differences as great as 20 Wm −2 depending on the conditions of the sunlit portion of the Earth. They are also highly correlated, having correlation coefficients of 0.89, indicating that they both capture the diurnal variation. Global annual daytime mean LW fluxes from NISTAR are 3 % greater than those from CERES, but the correlation between them is only about 0.38.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a case for the exploration of Venus as an astrobiology target, focusing on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life.
Abstract: We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.

30 citations

Journal ArticleDOI
TL;DR: The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth’s radiation budget and solar spectral irradiance in the Herzberg continuum using high quantum efficiency ultraviolet and infrared sensors.
Abstract: The UltraViolet and infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ-SAT) mission aims to demonstrate pioneering technologies for broadband measurement of the Earth’s radiation budget (ERB) and solar spectral irradiance (SSI) in the Herzberg continuum (200–242 nm) using high quantum efficiency ultraviolet and infrared sensors. This research and innovation mission has been initiated by the University of Versailles Saint-Quentin-en-Yvelines (UVSQ) with the support of the International Satellite Program in Research and Education (INSPIRE). The motivation of the UVSQ-SAT mission is to experiment miniaturized remote sensing sensors that could be used in the multi-point observation of Essential Climate Variables (ECV) by a small satellite constellation. UVSQ-SAT represents the first step in this ambitious satellite constellation project which is currently under development under the responsibility of the Laboratory Atmospheres, Environments, Space Observations (LATMOS), with the UVSQ-SAT CubeSat launch planned for 2020/2021. The UVSQ-SAT scientific payload consists of twelve miniaturized thermopile-based radiation sensors for monitoring incoming solar radiation and outgoing terrestrial radiation, four photodiodes that benefit from the intrinsic advantages of Ga 2 O 3 alloy-based sensors made by pulsed laser deposition for measuring solar UV spectral irradiance, and a new three-axis accelerometer/gyroscope/compass for satellite attitude estimation. We present here the scientific objectives of the UVSQ-SAT mission along the concepts and properties of the CubeSat platform and its payload. We also present the results of a numerical simulation study on the spatial reconstruction of the Earth’s radiation budget, on a geographical grid of 1 ° × 1 ° degree latitude-longitude, that could be achieved with UVSQ-SAT for different observation periods.

15 citations

Journal ArticleDOI
TL;DR: An enhanced design for the wide field-of-view radiometer is proposed, with as key features the use of a near-spherical cavity to obtain a uniform angular sensitivity and the integration of the shuttered electrical substitution principle, eliminating long term drifts of the radiometer and improving its time response.
Abstract: Climate on Earth is determined by the Earth Radiation Budget (ERB), which quantifies the incoming and outgoing radiative energy fluxes. The ERB can be monitored by non-scanning wide field-of-view radiometers, or by scanning narrow field-of-view radiometers. We propose an enhanced design for the wide field-of-view radiometer, with as key features the use of a near-spherical cavity to obtain a uniform angular sensitivity and the integration of the shuttered electrical substitution principle, eliminating long term drifts of the radiometer and improving its time response. The target absolute accuracy is 1 W/m 2 and the target stability is 0.1 W/m 2 per decade for the measurement of the total outgoing Earth’s radiation. In order to increase the spatial resolution and to separate the total outgoing radiation into reflected Solar and emitted thermal radiation, we propose the joint use of the radiometer with wide field-of-view Shortwave (400–900 nm) and Longwave (8–14 μm) cameras. This paper presents the concept and design of the novel wide field-of-view radiometer, including simulations and analyses of its expected performance. We focus on mechanical design and the measurement characteristics based on optical and thermal analyses. In combination with the cameras, we obtain an estimated accuracy of 0.44 W/m 2 .

11 citations

Journal ArticleDOI
TL;DR: In this paper, a novel elevation and zenith-angle-dependent threshold scheme was developed based on radiative transfer model simulations that achieves significant improvements over the existing algorithm, which is applicable for all snow and ice surfaces including Antarctic, sea ice, high-latitude snow, and high-altitude glacier regions.
Abstract: . Satellite cloud detection over snow and ice has been difficult for passive remote sensing instruments due to the lack of contrast between clouds and cold/bright surfaces; cloud mask algorithms often heavily rely on shortwave infrared (IR) channels over such surfaces. The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) does not have infrared channels, which makes cloud detection over snow and ice surfaces even more challenging. This study investigates the methodology of applying EPIC's two oxygen absorption band pair ratios in the A band (764, 780 nm) and B band (688, 680 nm) for cloud detection over the snow and ice surfaces. We develop a novel elevation and zenith-angle-dependent threshold scheme based on radiative transfer model simulations that achieves significant improvements over the existing algorithm. When compared against a composite cloud mask based on geosynchronous Earth orbit (GEO) and low Earth orbit (LEO) sensors, the positive detection rate over snow and ice surfaces increased from around 36 % to 65 % while the false detection rate dropped from 50 % to 10 % for observations of January 2016 and 2017. The improvement in July is less substantial due to relatively better performance in the current algorithm. The new algorithm is applicable for all snow and ice surfaces including Antarctic, sea ice, high-latitude snow, and high-altitude glacier regions. This method is less reliable when clouds are optically thin or below 3 km because the sensitivity is low in oxygen band ratios for these cases.

9 citations

Journal ArticleDOI
TL;DR: The importance of measuring the Earth’s radiation budget and its energy imbalance and the scientific objectives related to its various components are presented.
Abstract: UltraViolet & infrared Sensors at high Quantum efficiency onboard a small SATellite (UVSQ- SAT) is a small satellite at the CubeSat standard, whose development began as one of the missions in the International Satellite Program in Research and Education (INSPIRE) consortium in 2017. UVSQ- SAT is an educational, technological and scientific pathfinder CubeSat mission dedicated to the observation of the Earth and the Sun. It was imagined, designed, produced and tested by LATMOS in collaboration with its academic and industrial partners, and the French-speaking radioamateur community. About the size of a Rubik’s Cube and weighing about 2 kg, this satellite was put in orbit in January 2021 by the SpaceX Falcon 9 launch vehicle. After briefly introducing the UVSQ-SAT mission, this paper will present the importance of measuring the Earth’s radiation budget and its energy imbalance and the scientific objectives related to its various components. Finally, the first in-orbit observations will be shown (maps of the solar radiation reflected by the Earth and of the outgoing longwave radiation at the top of the atmosphere during February 2021). UVSQ-SAT is one of the few CubeSats worldwide with a scientific goal related to climate studies. It represents a research in remote sensing technologies for Climate observation and monitoring.

9 citations