scispace - formally typeset
Search or ask a question
Author

Ying-Jie Wang

Bio: Ying-Jie Wang is an academic researcher from Zhejiang University. The author has contributed to research in topics: Induced pluripotent stem cell & Phosphatidylinositol. The author has an hindex of 24, co-authored 51 publications receiving 2414 citations. Previous affiliations of Ying-Jie Wang include Flinders University & Merck & Co..


Papers
More filters
Journal ArticleDOI
08 Aug 2003-Cell
TL;DR: It is proposed that PI4KIIalpha establishes the Golgi's unique lipid-defined organelle identity by generating PI(4)P-rich domains that specify the docking of the AP-1 coat machinery.

530 citations

Journal ArticleDOI
TL;DR: C34 derivatized with cholesterol (C34- Chol) shows dramatically increased antiviral potency on a panel of primary isolates, with IC90 values 15- to 300-fold lower than enfuvirtide and the second-generation inhibitor T1249, making C34-Chol the most potent HIV fusion inhibitor to date.
Abstract: Peptides derived from the heptad repeat 2 (HR2) region of the HIV fusogenic protein gp41 are potent inhibitors of viral infection, and one of them, enfuvirtide, is used for the treatment of therapy-experienced AIDS patients. The mechanism of action of these peptides is binding to a critical intermediate along the virus–cell fusion pathway, and accordingly, increasing the affinity for the intermediate yields more potent inhibitors. We took a different approach, namely to increase the potency of the HR2 peptide inhibitor C34 by targeting it to the cell compartment where fusion occurs, and we show here that a simple, yet powerful way to accomplish this is attachment of a cholesterol group. C34 derivatized with cholesterol (C34-Chol) shows dramatically increased antiviral potency on a panel of primary isolates, with IC90 values 15- to 300-fold lower than enfuvirtide and the second-generation inhibitor T1249, making C34-Chol the most potent HIV fusion inhibitor to date. Consistent with its anticipated mechanism of action, the antiviral activity of C34-Chol is unusually persistent: washing target cells after incubation with C34-Chol, but before triggering fusion, increases IC50 only 7-fold, relative to a 400-fold increase observed for C34. Moreover, derivatization with cholesterol extends the half-life of the peptide in vivo. In the mouse, s.c. administration of 3.5 mg/kg C34-Chol yields a plasma concentration 24 h after injection >300-fold higher than the measured IC90 values. Because the fusion machinery targeted by C34-Chol is similar in several other enveloped viruses, we believe that these findings may be of general utility.

203 citations

Journal ArticleDOI
TL;DR: A site-specific, posttranslational modification of the Oct4 protein orchestrates the regulation of its stability, subcellular localization, and transcriptional activities, which collectively promotes the survival and tumorigenicity of ECCs.

162 citations

Journal ArticleDOI
TL;DR: It is shown that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked β-N-acetylglucosamine sugar in response to hypoxia, revealing a mechanistic understanding of how O-glycosylation directly regulates the P PP to confer a selective growth advantage to tumours.
Abstract: The pentose phosphate pathway (PPP) plays a critical role in macromolecule biosynthesis and maintaining cellular redox homoeostasis in rapidly proliferating cells. Upregulation of the PPP has been shown in several types of cancer. However, how the PPP is regulated to confer a selective growth advantage on cancer cells is not well understood. Here we show that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked β-N-acetylglucosamine sugar in response to hypoxia. Glycosylation activates G6PD activity and increases glucose flux through the PPP, thereby providing precursors for nucleotide and lipid biosynthesis, and reducing equivalents for antioxidant defense. Blocking glycosylation of G6PD reduces cancer cell proliferation in vitro and impairs tumor growth in vivo. Importantly, G6PD glycosylation is increased in human lung cancers. Our findings reveal a mechanistic understanding of how O-glycosylation directly regulates the PPP to confer a selective growth advantage to tumours.

160 citations

Journal ArticleDOI
TL;DR: The results indicate that constitutive endocytosis in CV-1 and HeLa cells requires (and may be regulated by) PIP2 produced primarily by PIP5KIβ, and the number of clathrin-coated pits at the plasma membrane increased when PIP 2 increased.
Abstract: Overexpression of phosphatidylinositol phosphate 5-kinase (PIP5KI) isoforms α, β, or γ in CV-1 cells increased phosphatidylinositol 4,5-bisphosphate (PIP2) levels by 35, 180, and 0%, respectively. Endocytosis of transferrin receptors, association of AP-2 proteins with membranes, and the number of clathrin-coated pits at the plasma membrane increased when PIP2 increased. When expression of PIP5KIβ was inhibited with small interference RNA in HeLa cells, expression of PIP5KIα was also reduced slightly, but PIP5KIγ expression was increased. PIP2 levels and internalization of transferrin receptors dropped 50% in these cells; thus, PIP5KIγ could not compensate for loss of PIP5KIβ. When expression of PIP5KIα was reduced, expression of both PIP5KIβ and PIP5KIγ increased and PIP2 levels did not change. A similar increase of PIP5KIα and PIP5KIβ occurred when PIP5KIγ was inhibited. These results indicate that constitutive endocytosis in CV-1 and HeLa cells requires (and may be regulated by) PIP2 produced primarily by PIP5KIβ.

142 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.

5,372 citations

Journal ArticleDOI
12 Oct 2006-Nature
TL;DR: Inositol phospholipids mediate acute responses, but also act as constitutive signals that help define organelle identity, and play a fundamental part in controlling membrane–cytosol interfaces.
Abstract: Inositol phospholipids have long been known to have an important regulatory role in cell physiology. The repertoire of cellular processes known to be directly or indirectly controlled by this class of lipids has now dramatically expanded. Through interactions mediated by their headgroups, which can be reversibly phosphorylated to generate seven species, phosphoinositides play a fundamental part in controlling membrane-cytosol interfaces. These lipids mediate acute responses, but also act as constitutive signals that help define organelle identity. Their functions, besides classical signal transduction at the cell surface, include regulation of membrane traffic, the cytoskeleton, nuclear events and the permeability and transport functions of membranes.

2,528 citations

Journal Article
TL;DR: Research data show that more resistant stem cells than common cancer cells exist in cancer patients, and to identify unrecognized differences between cancer stem cells and cancer cells might be able to develop effective classification, diagnose and treat for cancer.
Abstract: Stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Research data show that more resistant stem cells than common cancer cells exist in cancer patients.To identify unrecognized differences between cancer stem cells and cancer cells might be able to develope effective classification,diagnose and treat ment for cancer.

2,194 citations

Journal ArticleDOI
TL;DR: Clathrin-mediated endocytosis is the endocytic portal into cells through which cargo is packaged into vesicles with the aid of a clathrin coat and is fundamental to neurotransmission, signal transduction and the regulation of many plasma membrane activities and is thus essential to higher eukaryotic life.
Abstract: Clathrin-mediated endocytosis is the endocytic portal into cells through which cargo is packaged into vesicles with the aid of a clathrin coat. It is fundamental to neurotransmission, signal transduction and the regulation of many plasma membrane activities and is thus essential to higher eukaryotic life. Morphological stages of vesicle formation are mirrored by progression through various protein modules (complexes). The process involves the formation of a putative FCH domain only (FCHO) initiation complex, which matures through adaptor protein 2 (AP2)-dependent cargo selection, and subsequent coat building, dynamin-mediated scission and finally auxilin- and heat shock cognate 70 (HSC70)-dependent uncoating. Some modules can be used in other pathways, and additions or substitutions confer cell specificity and adaptability.

1,974 citations

Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles, including Vesicle budding and cargo selection, which depend on a machinery that includes the SNARE proteins.

1,713 citations