scispace - formally typeset
Search or ask a question
Author

Yingji Li

Bio: Yingji Li is an academic researcher from Chinese PLA General Hospital. The author has contributed to research in topics: Familial hemiplegic migraine & ATP1A2. The author has an hindex of 1, co-authored 3 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated whether the gut microbiome influences migraine-related hyperalgesia and found that the mice transplanted with the gut microbial profile from a patient with migraine had more severe MG than the mice receiving microbiota from a matched healthy control.
Abstract: Background Gut microbiota disturbance is increasingly suggested to be involved in the pathogenesis of migraine but this connection remains unsubstantiated. This study aimed to investigate whether the gut microbiome influences migraine-related hyperalgesia. Methods Nitroglycerin-induced hyperalgesia was evaluated in mice with different gut microbiota statuses as follows: Specific pathogen-free mice; germ-free mice; specific pathogen-free mice treated with antibiotics to deplete the gut microbiome (ABX mice); and germ-free mice transplanted with the gut microbial profile from specific pathogen-free mice (GFC mice). Moreover, nitroglycerin-induced hyperalgesia was compared between recipient mice transplanted with gut microbiota from a patient with migraine and those that received gut microbiota from a sex- and age-matched healthy control. Results In specific pathogen-free mice, a decreased mechanical threshold in the hind paw, increased grooming time, increased c-Fos expression level and decreased calcitonin gene-related peptide expression level as well as increased tumor necrosis factor-α concentration in the trigeminal nucleus caudalis were observed after nitroglycerin administration compared with saline treatment. However, increased basal sensitivity and higher basal concentrations of TNF-α in the trigeminal nucleus caudalis were observed in germ-free and ABX mice, while no significant difference in hyperalgesia was observed between the nitroglycerin group and saline group in germ-free and ABX mice. Moreover, significant hyperalgesia was induced by nitroglycerin administration in GFC mice. The mice transplanted with the gut microbial profile from a patient with migraine had more severe nitroglycerin-induced hyperalgesia than the mice receiving microbiota from a matched healthy control. Conclusion Our findings highlight the involvement of the gut microbiome in normal mechanical pain sensation and pathogenesis of migraine.

10 citations

Journal ArticleDOI
TL;DR: G762S in ATP1A2 is a novel pathogenic mutation identified in a Chinese family with familial hemiplegic migraine, which causes loss of function by changing the protein structure of the Na+/K+-ATPase α2 subunit.
Abstract: BackgroundATP1A2 has been identified as the genetic cause of familial hemiplegic migraine type 2. Over 80 ATP1A2 mutations have been reported, but no data from Chinese family studies has been inclu...

6 citations

Journal ArticleDOI
TL;DR: In this article, 10 ATP1A2 missense mutations were selected according to different phenotypes of FHM patients, including pure FHM, FHM with epilepsy and intellectual disability.
Abstract: Background Mutations in ATP1A2, the gene encoding the α2 subunit of Na+/K+-ATPase, are the main cause of familial hemiplegic migraine type 2 (FHM2). The clinical presentation of FHM2 with mutations in the same gene varies from pure FHM to severe forms with epilepsy and intellectual disability, but the correlation of these symptoms with different ATP1A2 mutations is still unclear. Methods Ten ATP1A2 missense mutations were selected according to different phenotypes of FHM patients. They caused pure FHM (FHM: R65W, R202Q, R593W, G762S), FHM with epilepsy (FHME: R548C, E825K, R938P), or FHM with epilepsy and intellectual disability (FHMEI: T378N, G615R, D718N). After ouabain resistance and fluorescence modification, plasmids carrying those mutations were transiently transfected into HEK293T and HeLa cells. The biochemical functions were studied including cell survival assays, membrane protein extraction, western blotting, and Na+/K+-ATPase activity tests. The electrophysiological functions of G762S, R938P, and G615R mutations were investigated in HEK293T cells using whole-cell patch-clamp. Homology modeling was performed to determine the locational distribution of ATP1A2 mutations. Results Compared with wild-type pumps, all mutations showed a similar level of protein expression and decreased cell viability in the presence of 1 µM ouabain, and there was no significant difference among the mutant groups. The changes in Na+/K+-ATPase activity were correlated with the severity of FHM phenotypes. In the presence of 100 µM ouabain, the Na+/K+-ATPase activity was FHM > FHME > FHMEI. The ouabain-sensitive Na+/K+-ATPase activity of each mutant was significantly lower than that of the wild-type protein, and there was no significant difference among all mutant groups. Whole-cell voltage-clamp recordings in HEK293T cells showed that the ouabain-sensitive pump currents of G615R were significantly reduced, while those of G762S and R938P were comparable to those of the wild-type strain. Conclusions ATP1A2 mutations cause phenotypes ranging from pure FHM to FHM with epilepsy and intellectual disability due to varying degrees of deficits in biochemical and electrophysiological properties of Na+/K+-ATPase. Mutations associated with intellectual disability presented with severe impairment of Na+/K+-ATPase. Whether epilepsy is accompanied, or the type of epilepsy did not seem to affect the degree of impairment of pump function.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, 10 ATP1A2 missense mutations were selected according to different phenotypes of FHM patients, including pure FHM, FHM with epilepsy and intellectual disability.
Abstract: Background Mutations in ATP1A2, the gene encoding the α2 subunit of Na+/K+-ATPase, are the main cause of familial hemiplegic migraine type 2 (FHM2). The clinical presentation of FHM2 with mutations in the same gene varies from pure FHM to severe forms with epilepsy and intellectual disability, but the correlation of these symptoms with different ATP1A2 mutations is still unclear. Methods Ten ATP1A2 missense mutations were selected according to different phenotypes of FHM patients. They caused pure FHM (FHM: R65W, R202Q, R593W, G762S), FHM with epilepsy (FHME: R548C, E825K, R938P), or FHM with epilepsy and intellectual disability (FHMEI: T378N, G615R, D718N). After ouabain resistance and fluorescence modification, plasmids carrying those mutations were transiently transfected into HEK293T and HeLa cells. The biochemical functions were studied including cell survival assays, membrane protein extraction, western blotting, and Na+/K+-ATPase activity tests. The electrophysiological functions of G762S, R938P, and G615R mutations were investigated in HEK293T cells using whole-cell patch-clamp. Homology modeling was performed to determine the locational distribution of ATP1A2 mutations. Results Compared with wild-type pumps, all mutations showed a similar level of protein expression and decreased cell viability in the presence of 1 µM ouabain, and there was no significant difference among the mutant groups. The changes in Na+/K+-ATPase activity were correlated with the severity of FHM phenotypes. In the presence of 100 µM ouabain, the Na+/K+-ATPase activity was FHM > FHME > FHMEI. The ouabain-sensitive Na+/K+-ATPase activity of each mutant was significantly lower than that of the wild-type protein, and there was no significant difference among all mutant groups. Whole-cell voltage-clamp recordings in HEK293T cells showed that the ouabain-sensitive pump currents of G615R were significantly reduced, while those of G762S and R938P were comparable to those of the wild-type strain. Conclusions ATP1A2 mutations cause phenotypes ranging from pure FHM to FHM with epilepsy and intellectual disability due to varying degrees of deficits in biochemical and electrophysiological properties of Na+/K+-ATPase. Mutations associated with intellectual disability presented with severe impairment of Na+/K+-ATPase. Whether epilepsy is accompanied, or the type of epilepsy did not seem to affect the degree of impairment of pump function.

5 citations

Journal ArticleDOI
TL;DR: A review of the history of migraine theories and summarizes the recent studies showing how gut microbiota is involved in the pathophysiology of migraine are also discussed in this article , where the role of the gut microbiota in migraine is discussed.

4 citations

Journal ArticleDOI
TL;DR: In this article , the authors used a mice model induced by recurrent dural infusion of inflammatory soup (IS) to investigate the duration and levels change of astrocytic activation in the trigeminal nucleus caudalis (TNC).
Abstract: Astrocytic activation might play a significant role in the central sensitization of chronic migraine (CM). However, the temporal characteristics of the astrocytic activation in the trigeminal nucleus caudalis (TNC) and the molecular mechanism under the process remain not fully understood. Therefore, this study aims to investigate the duration and levels change of astrocytic activation and to explore the correlation between astrocytic activation and the levels change of cytokines release.We used a mice model induced by recurrent dural infusion of inflammatory soup (IS). The variation with time of IS-induced mechanical thresholds in the periorbital and hind paw plantar regions were evaluated using the von Frey filaments test. We detected the expression profile of glial fibrillary acidic protein (GFAP) in the TNC through immunofluorescence staining and western blot assay. We also investigated the variation with time of the transcriptional levels of GFAP and ionized calcium binding adapter molecule 1 (Iba1) through RNAscope in situ hybridization analysis. Then, we detected the variation with time of cytokines levels in the TNC tissue extraction and serum, including c-c motif chemokine ligand 2 (CCL2), c-c motif chemokine ligand 5 (CCL5), c-c motif chemokine ligand 7 (CCL7), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 1 (CXCL1), c-x-c motif chemokine ligand 13 (CXCL13), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), macrophage colony-stimulating factor (M-CSF), interleukin 1beta (IL-1β), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 17A (IL-17A).Recurrent IS infusion resulted in cutaneous allodynia in both the periorbital region and hind paw plantar, ranging from 5 d (after the second IS infusion) to 47 d (28 d after the last infusion) and 5 d to 26 d (7 d after the last infusion), respectively. The protein levels of GFAP and messenger ribonucleic acid (mRNA) levels of GFAP and Iba1 significantly increased and sustained from 20 d to 47 d (1 d to 28 d after the last infusion), which was associated with the temporal characteristics of astrocytic activation in the TNC. The CCL7 levels in the TNC decreased from 20 d to 47 d. But the CCL7 levels in serum only decreased on 20 d (1 d after the last infusion). The CCL12 levels in the TNC decreased on 22 d (3 d after the last infusion) and 33 d (14 d after the last infusion). In serum, the CCL12 levels only decreased on 22 d. The IL-10 levels in the TNC increased on 20 d.Our results indicate that the astrocytic activation generated and sustained in the IS-induced mice model from 1 d to 28 d after the last infusion and may contribute to the pathology through modulating CCL7, CCL12, and IL-10 release.

4 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper showed that a strong production of ROS-dependent CXCL17 was triggered by mycotoxins via p38 and JNK pathways, which modulated enhanced immuno-protective response with a remission of inflammation and apoptosis through PI3K/AKT/mTOR.

4 citations

Journal ArticleDOI
TL;DR: A review of the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways is provided in this article .

4 citations