scispace - formally typeset
Search or ask a question
Author

Yingjie Yang

Bio: Yingjie Yang is an academic researcher from Macquarie University. The author has contributed to research in topics: Mantle (geology) & Ambient noise level. The author has an hindex of 37, co-authored 105 publications receiving 6346 citations. Previous affiliations of Yingjie Yang include Chinese Academy of Sciences & University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
TL;DR: Proxy curves relating observed signal-to-noise ratios to average measurement uncertainties show promise to provide useful expected measurement error estimates in the absence of the long time-series needed for temporal subsetting.
Abstract: SUMMARY Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing as it has developed over the past several years and is intended to explain and justify this development through salient examples. The ambient noise data processing procedure divides into four principal phases: (1) single station data preparation, (2) cross-correlation and temporal stacking, (3) measurement of dispersion curves (performed with frequency‐time analysis for both group and phase speeds) and (4) quality control, including error analysis and selection of the acceptable measurements. The procedures that are described herein have been designed not only to deliver reliable measurements, but to be flexible, applicable to a wide variety of observational settings, as well as being fully automated. For an automated data processing procedure, data quality control measures are particularly important to identify and reject bad measurements and compute quality assurance statistics for the accepted measurements. The principal metric on which to base a judgment of quality is stability, the robustness of the measurement to perturbations in the conditions under which it is obtained. Temporal repeatability, in particular, is a significant indicator of reliability and is elevated to a high position in our assessment, as we equate seasonal repeatability with measurement uncertainty. Proxy curves relating observed signal-to-noise ratios to average measurement uncertainties show promise to provide useful expected measurement error estimates in the absence of the long time-series needed for temporal subsetting.

1,798 citations

Journal ArticleDOI
TL;DR: In this article, a cross-correlations of long time-series of ambient noise data is computed in daily segments, stacked over 1 yr, and Rayleigh wave group dispersion curves from 8 to 50 s period are measured using a phase-matched filter, frequency time analysis technique.
Abstract: SUMMARY We extend ambient noise surface wave tomography both in bandwidth (10‐50 s period) and in geographical extent (across much of Europe) compared with previous applications. 12 months of ambient noise data from 2004 are analysed. The data are recorded at about 125 broadband Seismic stations from the Global Seismic Network and the Orfeus Virtual European Broad-band seismic Network. Cross-correlations are computed in daily segments, stacked over 1 yr, and Rayleigh wave group dispersion curves from 8 to 50 s period are measured using a phase-matched filter, frequency time analysis technique. We estimate measurement uncertainties using the seasonal variation of the dispersion curves revealed in 3 month stacks. On average, uncertainties in group delays increase with period from ∼ 3t o∼7 s from periods of 10 to 50 s, respectively. Group speed maps at periods from 10 to 50 s are estimated. The resulting path coverage is denser and displays a more uniform azimuthal distribution than from earthquake-emitted surface waves. The fit of the group speed maps to the ambient noise data is significantly improved below 30 s compared to the fit achieved with earthquake data. Average resolution is estimated to be about 100 km at 10 s period, but degrades with increasing period and toward the periphery of the study region. The resulting ambient noise group speed maps demonstrate significant agreement with known geological and tectonic features. In particular, the signatures of sedimentary basins and crustal thickness are revealed clearly in the maps. These results are evidence that surface wave tomography based on crosscorrelations of long time-series of ambient noise data can be achieved over a broad period band on nearly a continental scale and yield higher resolution and more reliable group speed maps than based on traditional earthquake-based measurements.

533 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D model of the crust and uppermost mantle is derived from the Rayleigh wave phase velocity maps from more than 600 stations in and around Tibet, from 10 s to 60 s period.
Abstract: [1] Based on 1–2 years of continuous observations of seismic ambient noise data obtained at more than 600 stations in and around Tibet, Rayleigh wave phase velocity maps are constructed from 10 s to 60 s period. A 3-D Vsv model of the crust and uppermost mantle is derived from these maps. The 3-D model exhibits significant apparently inter-connected low shear velocity features across most of the Tibetan middle crust at depths between 20 and 40 km. These low velocity zones (LVZs) do not conform to surface faults and, significantly, are most prominent near the periphery of Tibet. The observations support the internal deformation model in which strain is dispersed in the deeper crust into broad ductile shear zones, rather than being localized horizontally near the edges of rigid blocks. The prominent LVZs are coincident with strong mid-crustal radial anisotropy in western and central Tibet and probably result at least partially from anisotropic minerals aligned by deformation, which mitigates the need to invoke partial melt to explain the observations. Irrespective of their cause in partial melt or mineral alignment, mid-crustal LVZs reflect deformation and their amplification near the periphery of Tibet provides new information about the mode of deformation across Tibet.

247 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the signal-to-noise ratios (SNR) of Rayleigh waves for positive and negative correlation time lags at periods of 8, 14, 25 and 50 s to determine the azimuthal distribution of strong ambient noise sources.
Abstract: [1] Interstation cross correlations of ambient seismic noise from 1 year of continuous data at periods between 6 and 50 s are used to study the origin of the ambient noise using stations located in Europe, southern Africa, Asia, and three regions within North America. The signal-to-noise ratios (SNR) of Rayleigh waves for positive and negative correlation time lags at periods of 8, 14, 25 and 50 s are used to determine the azimuthal distribution of strong ambient noise sources. Ambient noise in both the primary (10–20 s) and secondary microseism bands (5–10 s) comes dominantly from the directions of relatively nearby coastlines with stronger noise occurring in the Northern Hemisphere in northern winter and in the Southern Hemisphere in southern winter, consistent with the hypothesis that oceanic microseisms are generating this noise. The observed differences in the directivity of noise in the primary and secondary microseism bands are the consequence of propagation and attenuation, rather than the location of generation. At intermediate and long periods (>20 s), there is much less seasonal variation in both signal strength and directivity. We argue that our results are explained most simply by near-coastal sources rather than deep ocean sources at all periods. Although the dominant ambient noise sources are distributed inhomogeneously in azimuth, strong ambient noise emerges from most directions when using recordings that are 1 year in duration. Simulations illustrate that this is what ensures the accuracy of the empirical Green's functions and ambient noise tomography.

243 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply conservative data quality control criteria to accept between ∼5000 and ∼45,000 measurements as a function of period, which produce a lateral resolution between 100 and 200 km across most of the Tibetan Plateau and adjacent regions to the east.
Abstract: Ambient noise tomography is applied to the significant data resources now available across Tibet and surrounding regions to produce Rayleigh wave phase speed maps at periods between 6 and 50 s. Data resources include the permanent Federation of Digital Seismographic Networks, five temporary U.S. Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) experiments in and around Tibet, and Chinese provincial networks surrounding Tibet from 2003 to 2009, totaling ∼600 stations and ∼150,000 interstation paths. With such a heterogeneous data set, data quality control is of utmost importance. We apply conservative data quality control criteria to accept between ∼5000 and ∼45,000 measurements as a function of period, which produce a lateral resolution between 100 and 200 km across most of the Tibetan Plateau and adjacent regions to the east. Misfits to the accepted measurements among PASSCAL stations and among Chinese stations are similar, with a standard deviation of ∼1.7 s, which indicates that the final dispersion measurements from Chinese and PASSCAL stations are of similar quality. Phase velocities across the Tibetan Plateau are lower, on average, than those in the surrounding nonbasin regions. Phase velocities in northern Tibet are lower than those in southern Tibet, perhaps implying different spatial and temporal variations in the way the high elevations of the plateau are created and maintained. At short periods ( 20 s), very high velocities are imaged in the Tarim Basin, the Ordos Block, and the Sichuan Basin. These phase velocity dispersion maps provide information needed to construct a 3-D shear velocity model of the crust across the Tibetan Plateau and surrounding regions.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Proxy curves relating observed signal-to-noise ratios to average measurement uncertainties show promise to provide useful expected measurement error estimates in the absence of the long time-series needed for temporal subsetting.
Abstract: SUMMARY Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing as it has developed over the past several years and is intended to explain and justify this development through salient examples. The ambient noise data processing procedure divides into four principal phases: (1) single station data preparation, (2) cross-correlation and temporal stacking, (3) measurement of dispersion curves (performed with frequency‐time analysis for both group and phase speeds) and (4) quality control, including error analysis and selection of the acceptable measurements. The procedures that are described herein have been designed not only to deliver reliable measurements, but to be flexible, applicable to a wide variety of observational settings, as well as being fully automated. For an automated data processing procedure, data quality control measures are particularly important to identify and reject bad measurements and compute quality assurance statistics for the accepted measurements. The principal metric on which to base a judgment of quality is stability, the robustness of the measurement to perturbations in the conditions under which it is obtained. Temporal repeatability, in particular, is a significant indicator of reliability and is elevated to a high position in our assessment, as we equate seasonal repeatability with measurement uncertainty. Proxy curves relating observed signal-to-noise ratios to average measurement uncertainties show promise to provide useful expected measurement error estimates in the absence of the long time-series needed for temporal subsetting.

1,798 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model for the origin of the 2.55-2.50-Ga metamorphic pulse in the North China Craton (NCC), which is interpreted as a major phase of juvenile crustal growth in the craton.

1,181 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present new distribution maps of the Early Paleozoic ophiolites and associated volcanics in the Shangdan suture zone and the Middle Devonian-Middle Triassic Ophiolitic melange in the Mianlue suture zones, as well as the maps of granitoid and metamorphic belts displaying various ages.

864 citations

Journal ArticleDOI
TL;DR: In this article, a model for assembly and stabilization of the various Archean blocks of the NCC in the Paleoproterozoic has been proposed, based on the analysis of available stratigraphic, structural, geochemical, metamorphic and geochronologic data.

755 citations

Journal ArticleDOI
TL;DR: In this article, the results of Rayleigh wave and Love wave phase velocity tomography in the western United States using ambient seismic noise observed at over 250 broad-band stations from the EarthScope/USArray Transportable Array and regional networks were presented.
Abstract: SUMMARY We present the results of Rayleigh wave and Love wave phase velocity tomography in the western United States using ambient seismic noise observed at over 250 broad-band stations from the EarthScope/USArray Transportable Array and regional networks. All available threecomponent time-series for the 12-month span between 2005 November 1 and 2006 October 31 have been cross-correlated to yield estimated empirical Rayleigh and Love wave Green’s functions. The Love wave signals were observed with higher average signal-to-noise ratio (SNR) than Rayleigh wave signals and hence cannot be fully explained by the scattering of Rayleigh waves. Phase velocity dispersion curves for both Rayleigh and Love waves between 5 and 40 speriod were measured for each interstation path by applying frequency‐time analysis. The average uncertainty and systematic bias of the measurements are estimated using a method based on analysing thousands of nearly linearly aligned station-triplets. We find that empirical Green’s functions can be estimated accurately from the negative time derivative of the symmetric component ambient noise cross-correlation without explicit knowledge of the source distribution. The average traveltime uncertainty is less than 1 s at periods shorter than 24 s. We present Rayleigh and Love wave phase speed maps at periods of 8, 12, 16,and 20 s. The maps show clear correlations with major geological structures and qualitative agreement with previous results based on Rayleigh wave group speeds.

660 citations