scispace - formally typeset
Search or ask a question
Author

Yinhai Yang

Bio: Yinhai Yang is an academic researcher from Howard Hughes Medical Institute. The author has contributed to research in topics: KCNJ5 & ROMK. The author has an hindex of 1, co-authored 1 publications receiving 182 citations.

Papers
More filters
Journal ArticleDOI
01 May 1998-Neuron
TL;DR: A novel K+-selective, inward rectifier channel that is widely expressed in brain but is especially abundant in the Purkinje cell layer of the cerebellum and pyramidal cells of the hippocampus is cloned.

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Abstract: Inwardly rectifying K+ (Kir) channels allow K+ to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are ...

1,286 citations

Journal ArticleDOI
TL;DR: This chapter attempts to give an overview of the different genes coding for K+ channel principal and accessory subunits and their genealogical relationships, and discusses the possible correlation of different principal sub units with native K+ channels, the biophysical and pharmacological properties of channels formed when principal subunits are expressed in heterologous expression systems, and their patterns of tissue expression.
Abstract: K+ channel principal subunits are by far the largest and most diverse of the ion channels. This diversity originates partly from the large number of genes coding for K+ channel principal subunits, but also from other processes such as alternative splicing, generating multiple mRNA transcripts from a single gene, heteromeric assembly of different principal subunits, as well as possible RNA editing and posttranslational modifications. In this chapter, we attempt to give an overview (mostly in tabular format) of the different genes coding for K+ channel principal and accessory subunits and their genealogical relationships. We discuss the possible correlation of different principal subunits with native K+ channels, the biophysical and pharmacological properties of channels formed when principal subunits are expressed in heterologous expression systems, and their patterns of tissue expression. In addition, we devote a section to describing how diversity of K+ channels can be conferred by heteromultimer formation, accessory subunits, alternative splicing, RNA editing and posttranslational modifications. We trust that this collection of facts will be of use to those attempting to compare the properties of new subunits to the properties of others already known or to those interested in a comparison between native channels and cloned candidates.

1,141 citations

Journal Article
TL;DR: This review aims to provide an understanding of K(+) channel function at the molecular level in the context of disease processes and discuss the progress, hurdles, challenges, and opportunities in the exploitation of K(* channels as therapeutic targets by pharmacological and emerging genetic approaches.
Abstract: Potassium channels play important roles in vital cellular signaling processes in both excitable and nonexcitable cells. Over 50 human genes encoding various K(+) channels have been cloned during the past decade, and precise biophysical properties, subunit stoichiometry, channel assembly, and modulation by second messenger and ligands have been elucidated to a large extent. Recent advances in genetic linkage analysis have greatly facilitated the identification of many disease-producing loci, and naturally occurring mutations in various K(+) channels have been identified in diseases such as long-QT syndromes, episodic ataxia/myokymia, familial convulsions, hearing and vestibular diseases, Bartter's syndrome, and familial persistent hyperinsulinemic hypoglycemia of infancy. In addition, changes in K(+) channel function have been associated with cardiac hypertrophy and failure, apoptosis and oncogenesis, and various neurodegenerative and neuromuscular disorders. This review aims to 1) provide an understanding of K(+) channel function at the molecular level in the context of disease processes and 2) discuss the progress, hurdles, challenges, and opportunities in the exploitation of K(+) channels as therapeutic targets by pharmacological and emerging genetic approaches.

539 citations

Journal ArticleDOI
Susumu Seino1
TL;DR: KATP channels are the first example of a heteromultimeric complex assembled with a K+ channel and a receptor that are structurally unrelated to each other.
Abstract: ATP-sensitive K+ channels (KATP channels) play important roles in many cellular functions by coupling cell metabolism to electrical activity. By cloning members of the novel inwardly rectifying K+ channel subfamily Kir6.0 (Kir6.1 and Kir6.2) and the receptors for sulfonylureas (SUR1 and SUR2), researchers have clarified the molecular structure of KATP channels. KATP channels comprise two subunits: a Kir6.0 subfamily subunit, which is a member of the inwardly rectifying K+ channel family; and a SUR subunit, which is a member of the ATP-binding cassette (ABC) protein superfamily. KATP channels are the first example of a heteromultimeric complex assembled with a K+ channel and a receptor that are structurally unrelated to each other. Since 1995, molecular biological and molecular genetic studies of KATP channels have provided insights into the structure-function relationships, molecular regulation, and pathophysiological roles of KATP channels.

512 citations

Journal ArticleDOI
TL;DR: Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure.
Abstract: K+ channels are widely distributed in both plant and animal cells where they serve many distinct functions. K+ channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K+ channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K+ secretion. Moreover, K+ channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K+ channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K+ channels of renal origin.

305 citations