scispace - formally typeset
Search or ask a question
Author

Yinlong Zhu

Bio: Yinlong Zhu is an academic researcher from Monash University, Clayton campus. The author has contributed to research in topics: Oxygen evolution & Perovskite (structure). The author has an hindex of 31, co-authored 73 publications receiving 3891 citations. Previous affiliations of Yinlong Zhu include Center for Advanced Materials & Monash University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple and effective strategy for enhancing ORR and OER electrocatalytic activity in alkaline solution by introducing A-site cation deficiency in LaFeO3 perovskite was reported.
Abstract: Development of cost-effective and efficient electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of prime importance to emerging renewable energy technologies. Here, we report a simple and effective strategy for enhancing ORR and OER electrocatalytic activity in alkaline solution by introducing A-site cation deficiency in LaFeO3 perovskite; the enhancement effect is more pronounced for the OER than the ORR. Among the A-site cation deficient perovskites studied, La0.95FeO3-δ (L0.95F) demonstrates the highest ORR and OER activity and, hence, the best bifunctionality. The dramatic enhancement is attributed to the creation of surface oxygen vacancies and a small amount of Fe4+ species. This work highlights the importance of tuning cation deficiency in perovskites as an effective strategy for enhancing ORR and OER activity for applications in various oxygen-based energy storage and conversion processes.

578 citations

Journal ArticleDOI
TL;DR: The perovskite SrNb0.1 Co0.7 Fe0.2 O3-δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions.
Abstract: The perovskite SrNb0.1 Co0.7 Fe0.2 O3-δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions. This catalyst exhibits a higher intrinsic OER activity, a smaller Tafel slope and better stability than the state-of-the-art precious-metal IrO2 catalyst and the well-known BSCF perovskite. The mass activity and stability are further improved by ball milling. Several factors including the optimized eg orbital filling, good ionic and charge transfer abilities, as well as high OH(-) adsorption and O2 desorption capabilities possibly contribute to the excellent OER activity.

410 citations

Journal ArticleDOI
TL;DR: In this article, a nanostructured perovskite oxide (SNCF-NR) was used as a bifunctional electrocatalyst for overall water splitting, achieving a current density of 10 mA cm(-2) at a cell voltage of merely approximate 1.68 V.
Abstract: The development of highly efficient and low-cost electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is paramount for water splitting associated with the storage of clean and renewable energy. Here, this study reports its findings in the development of a nanostructured perovskite oxide as OER/HER bifunctional electrocatalyst for overall water splitting. Prepared by a facile electrospinning method, SrNb0.1Co0.7Fe0.2O3- perovskite nanorods (SNCF-NRs) display excellent OER and HER activity and stability in an alkaline solution, benefiting from the catalytic nature of perovskites and unique structural features. More importantly, the SNCF-NR delivers a current density of 10 mA cm(-2) at a cell voltage of merely approximate to 1.68 V while maintaining remarkable durability when used as both anodic and cathodic catalysts in an alkaline water electrolyzer. The performance of this bifunctional perovskite material is among the best ever reported for overall water splitting, offering a cost-effective alternative to noble metal based electrocatalysts.

343 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent advances in metal oxide-based electrocatalysts for hydrogen evolution reaction (HER) can be found in this paper, with special emphasis on designed strategies for promoting performance and property-activity correlation.
Abstract: Hydrogen production from electrochemical water splitting represents a highly promising technology for sustainable energy storage, but its widespread implementation heavily relies on the development of high-performance and cost-effective hydrogen evolution reaction (HER) electrocatalysts. Metal oxides, an important family of functional materials with diverse compositions and structures, were traditionally believed inactive towards HER. Encouragingly, the continuous breakthroughs and significant progress in recent years (mainly from 2015 onwards) make engineered metal oxides emerge as promising candidates for HER electrocatalysis. In this article, we present a comprehensive review of recent advances in metal oxide-based electrocatalysts for HER. We start with a brief description of some key fundamental concepts of HER, such as mechanisms, computational activity descriptors, and experimental parameters used to evaluate catalytic performance. This is followed by a overview of various types of metal oxide-based HER electrocatalysts reported so far, including single transition metal oxides, spinel oxides, perovskite oxides, metal (oxy)hydroxides, specially-structured metal oxides and oxide-containing hybrids, with special emphasis on designed strategies for promoting performance and property–activity correlation. Finally, some concluding remarks and perspectives about future opportunities of this exciting field are provided.

294 citations

Journal ArticleDOI
01 Mar 2017-Small
TL;DR: This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of theperovskites.
Abstract: Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed.

272 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Abstract: There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.

3,976 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the COF field is targeted, providing a historic overview of the chemistry, the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, and scrutinize the development and potential of various functions through elucidating structure-function correlations.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.

1,447 citations

Journal ArticleDOI
Chun Tang1, Ningyan Cheng1, Zonghua Pu1, Wei Xing1, Xuping Sun1 
TL;DR: The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented.
Abstract: Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) insitu by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270mV required to achieve 20mAcm(-2) and strong durability in 1.0M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10mAcm(-2) at a cell voltage of 1.63V.

1,376 citations

Journal ArticleDOI
TL;DR: Recent progress on the design, synthesis, and application of OER electrocatalysts based on transition-metal elements, including Co, Ni, and Fe, is summarized, and some invigorating perspectives on the future developments are provided.
Abstract: Increasing energy demands and environment awareness have promoted extensive research on the development of alternative energy conversion and storage technologies with high efficiency and environmental friendliness. Among them, water splitting is very appealing, and is receiving more and more attention. The critical challenge of this renewable-energy technology is to expedite the oxygen evolution reaction (OER) because of its slow kinetics and large overpotential. Therefore, developing efficient electrocatalysts with high catalytic activities is of great importance for high-performance water splitting. In the past few years, much effort has been devoted to the development of alternative OER electrocatalysts based on transition-metal elements that are low-cost, highly efficient, and have excellent stability. Here, recent progress on the design, synthesis, and application of OER electrocatalysts based on transition-metal elements, including Co, Ni, and Fe, is summarized, and some invigorating perspectives on the future developments are provided.

1,270 citations

Journal ArticleDOI
TL;DR: The recent development of this concept is reviewed here and a novel principle for the design of oxygen electrocatalysts is proposed and an overview of the defects in carbon-based, metal-free electrocatalysis for ORR and various defects in metal oxides/selenides for OER is provided.
Abstract: Oxygen electrocatalysis, including the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER), is a critical process for metal-air batteries Therefore, the development of electrocatalysts for the OER and the ORR is of essential importance Indeed, various advanced electrocatalysts have been designed for the ORR or the OER; however, the origin of the advanced activity of oxygen electrocatalysts is still somewhat controversial The enhanced activity is usually attributed to the high surface areas, the unique facet structures, the enhanced conductivities, or even to unclear synergistic effects, but the importance of the defects, especially the intrinsic defects, is often neglected More recently, the important role of defects in oxygen electrocatalysis has been demonstrated by several groups To make the defect effect clearer, the recent development of this concept is reviewed here and a novel principle for the design of oxygen electrocatalysts is proposed An overview of the defects in carbon-based, metal-free electrocatalysts for ORR and various defects in metal oxides/selenides for OER is also provided The types of defects and controllable strategies to generate defects in electrocatalysts are presented, along with techniques to identify the defects The defect-activity relationship is also explored by theoretical methods

1,222 citations