scispace - formally typeset
Search or ask a question
Author

Yiqiong Yang

Other affiliations: Tongji University
Bio: Yiqiong Yang is an academic researcher from University of Shanghai for Science and Technology. The author has contributed to research in topics: Adsorption & Catalysis. The author has an hindex of 21, co-authored 32 publications receiving 1787 citations. Previous affiliations of Yiqiong Yang include Tongji University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the physicochemical parameters, structural and electrochemical properties of g-C3N4/UiO-66 nanohybrids (CNUO-x) were investigated.

291 citations

Journal ArticleDOI
TL;DR: In this article, the morphologies, structural and optical properties of Ag/ZnO samples with various Ag content were investigated, and it was found that ZnO was wurtzite phase and metallic Ag particles were wrapped by ZnOs nanosheets, which could effectively reduce the recombination of electron-hole pairs and prolong lifetime of the electron-holes pairs, promoting the degradation efficiency.

228 citations

Journal ArticleDOI
TL;DR: In this study, defective UiO-66 materials modified with Cetyltrimethylammonium bromide (CTAB) surfactant were successfully synthesized by a simple approach and showed excellent regeneration performance for reprocessing cycles.

207 citations

Journal ArticleDOI
TL;DR: In this article, a strawsheave-like Ce-BTC derivative with a special morphology and a large surface area was prepared by a simple method, which exhibited excellent catalytic activity, long-term stability and water resistance.

159 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a novel and facile method for preparing cauliflower-like CeO2 through direct decomposition of cerium-based metal-organic framework (MOF) straw in air.

153 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years.
Abstract: Metal-organic framework (MOF) nanoparticles, also called porous coordination polymers, are a major part of nanomaterials science, and their role in catalysis is becoming central. The extraordinary variability and richness of their structures afford engineering synergies between the metal nodes, functional linkers, encapsulated substrates, or nanoparticles for multiple and selective heterogeneous interactions and activations in these MOF-based nanocatalysts. Pyrolysis of MOF-nanoparticle composites forms highly porous N- or P-doped graphitized MOF-derived nanomaterials that are increasingly used as efficient catalysts especially in electro- and photocatalysis. This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years. The major parts are catalysis of organic and molecular reactions, electrocatalysis, photocatalysis, and views of prospects. Major challenges of our society are addressed using these well-defined heterogeneous catalysts in the fields of synthesis, energy, and environment. In spite of the many achievements, enormous progress is still necessary to improve our understanding of the processes involved beyond the proof-of-concept, particularly for selective methane oxidation, hydrogen production, water splitting, CO2 reduction to methanol, nitrogen fixation, and water depollution.

1,233 citations

Journal ArticleDOI
TL;DR: In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed and the personal view on future research directions is wrapped up.
Abstract: More than 95% (in volume) of all of today’s chemical products are manufactured through catalytic processes, making research into more efficient catalytic materials a thrilling and very dynamic rese...

772 citations

Journal ArticleDOI
TL;DR: The use of metal organic frameworks in different fields such as the removal of absorption and separation of toxic substances from gas and liquid, catalysts, a variety of sensors, storage of clean energies and environmental applications, medical and biological applications, and optoelectronic equipment is included as discussed by the authors.
Abstract: Metal organic frameworks (MOFs) are considered as a group of compounds, either metal ions or clusters, harmonized with organic ligands to form one or some dimensional structures. In addition to resilient bonds between inorganic and organic units, reticular synthesis creates MOFs, accurate selection of constituents of which can produce high thermal and chemical stability and crystals of ultrahigh porosity. Other solids have not shown the same accuracy normally used in chemical modification and even the capability of increasing their metrics with no modification of the underlying topology. With shape of building units and chemical compositions multiplying based on specific structures, MOFs might result in compounds that propose a synergistic mixture of features. This study presents up to date advances in both synthesis methods of MOFs and structural characteristics. Furthermore, the use of MOFs in different fields such as the removal of absorption and separation of toxic substances from gas and liquid, catalysts, a variety of sensors, storage of clean energies and environmental applications, medical and biological applications, and optoelectronic equipment is included.

455 citations

Journal ArticleDOI
TL;DR: In this paper, different photocatalysts based on commercial ZnO modified by silver photodeposition were prepared in order to remove phenol from drinking wastewater containing phenol in which the almost total phenol removal was achieved after 180min of UV irradiation time.
Abstract: Different photocatalysts based on commercial ZnO modified by silver photodeposition were prepared in this work. The samples were characterized by X-ray fluorescence spectrometry (XRF), specific surface area (SSA), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV–vis diffuse reflectance (UV–vis DRS). XRD and XPS showed that Ag/ZnO samples are composed of metallic Ag (Ag0) and ZnO structure was identified. Furthermore, TEM analysis evidenced that the number of silver particles increased with the Ag content. At last, UV–vis DRS results revealed a reflectance band for Ag/ZnO samples, ascribed to the surface plasmon resonance (SPR) absorption of metal silver particles. Commercial ZnO and Ag/ZnO samples were evaluated in the phenol removal under UV light irradiation. It was observed an enhancement of photocatalytic phenol removal from aqueous solutions by silver addition in comparison to commercial ZnO. In particular, the phenol removal increased with the silver content from 0.14 to 0.88 wt%, after this content (i.e 1.28 wt%) the phenol degradation significantly decreased indicating that the optimal Ag content was equal to 0.88 wt%. The influence of the best photocatalyst dosage and the change of the initial phenol concentration in solution were also investigated in this work and the best photocatalytic performance was obtained by using 50 mg L−1 of phenol initial concentration and 0.15 g L−1 of photocatalyst dosage. Finally, the optimized Ag/ZnO photocatalyst was employed for the treatment of a real drinking wastewater containing phenol in which the almost total phenol removal was achieved after 180 min of UV irradiation time.

370 citations