scispace - formally typeset
Search or ask a question
Author

Yiqun Wang

Bio: Yiqun Wang is an academic researcher from Tsinghua University. The author has contributed to research in topics: Energy harvesting & Power management. The author has an hindex of 10, co-authored 19 publications receiving 632 citations.

Papers
More filters
Proceedings ArticleDOI
12 Nov 2012
TL;DR: A fabricated nonvolatile processor based on ferroelectric flip-flops can operate continuously even under power failures occurring at 20 KHz and will provide a new level of support to chip-level fine-grained power management and energy harvesting applications.
Abstract: Nonvolatile processors offer a number of desirable properties including instant on/off, zero standby power and resilience to power failures. This paper presents a fabricated nonvolatile processor based on ferroelectric flip-flops. These flipflops are used in a distributed fashion and are able to maintain system states without any power supply indefinitely. An efficient controller is employed to achieve parallel reads and writes to the flip-flops. A reconfigurable voltage detection system is designed for automatic system backup during power failures. Measurement results show that this nonvolatile processor can operate continuously even under power failures occurring at 20 KHz. It can backup system states within 7μs and restore them within 3 μs. Such capabilities will provide a new level of support to chip-level fine-grained power management and energy harvesting applications.

206 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: New metrics of nonvolatile processors to consider energy harvesting factors for the first time are proposed and the nonvolatility processor design from circuit to system level is explored.
Abstract: Energy harvesting is gaining more and more attentions due to its characteristics of ultra-long operation time without maintenance. However, frequent unpredictable power failures from energy harvesters bring performance and reliability challenges to traditional processors. Nonvolatile processors are promising to solve such a problem due to their advantage of zero leakage and efficient backup and restore operations. To optimize the nonvolatile processor design, this paper proposes new metrics of nonvolatile processors to consider energy harvesting factors for the first time. Furthermore, we explore the nonvolatile processor design from circuit to system level. A prototype of energy harvesting nonvolatile processor is set up and experimental results show that the proposed performance metric meets the measured results by less than 6.27% average errors. Finally, the energy consumption of nonvolatile processor is analyzed under different benchmarks.

127 citations

Journal ArticleDOI
TL;DR: This paper pioneers a converter-less PV power system with the maximum power point tracking that directly supplies power to the load without the power converters or the energy storage element and achieves an 87.1% of overall system efficiency during a day.
Abstract: Energy harvesting from natural environment gives range of benefits for the Internet of things. Scavenging energy from photovoltaic (PV) cells is one of the most practical solutions in terms of power density among existing energy harvesting sources. PV power systems mandate the maximum power point tracking (MPPT) to scavenge the maximum possible solar energy. In general, a switching-mode power converter, an MPPT charger, controls the charging current to the energy storage element (a battery or equivalent), and the energy storage element provides power to the load device. The mismatch between the maximum power point (MPP) current and the load current is managed by the energy storage element. However, such architecture causes significant energy loss (typically over 20%) and a significant weight/volume and a high cost due to the cascaded power converters and the energy storage element. This paper pioneers a converter-less PV power system with the MPPT that directly supplies power to the load without the power converters or the energy storage element. The proposed system uses a nonvolatile microprocessor to enable an extremely fine-grain dynamic power management in a few hundred microseconds. This makes it possible to match the load current with the MPP current. We present detailed modeling, simulation, and optimization of the proposed energy harvesting system including the radio frequency transceiver. Experiments show that the proposed setup achieves an 87.1% of overall system efficiency during a day, 30.6% higher than the conventional MPPT methods in actual measurements, and thus a significantly higher duty cycle under a weak solar irradiance.

87 citations

Proceedings ArticleDOI
12 Mar 2012
TL;DR: A compare and compress recovery architecture, consisting of a parallel run-length codec (PRLC) and a state table logic, to reduce the area of nonvolatile registers and a heuristic vector selecting algorithm, which can provide over 42% better register number reduction than other vector selecting approaches.
Abstract: Nonvolatile processor has become an emerging topic in recent years due to its zero standby power, resilience to power failures and instant on feature. This paper first demonstrated a fabricated nonvolatile 8051-compatible processor design, which indicates the ferroelectric nonvolatile version leads to over 90% area overhead compared with the volatile design. Therefore, we proposed a compare and compress recovery architecture, consisting of a parallel run-length codec (PRLC) and a state table logic, to reduce the area of nonvolatile registers. Experimental results demonstrate that it can reduce the number of nonvolatile registers by 4 times with less than 1% overflow possibility, which leads to 43% overall processor area savings. Furthermore, we implemented the novel PRLC and defined the method to optimize the optimal parallel degree to accelerate the compressions. Finally, we proposed a reconfigurable state table architecture, which supports the reference vector selecting for different applications. With our heuristic vector selecting algorithm, the optimal vector can provide over 42% better register number reduction than other vector selecting approaches. Our method is also applicable to designs with other nonvolatile materials based registers.

66 citations

Journal ArticleDOI
TL;DR: With the proposed vector selection algorithm, the PaCC architecture can outperform other vector selection approaches by over 59% in terms of reduction in the number of NV registers, which leads to up to 30% processor area saving.
Abstract: Nonvolatile (NV) processors have attracted much attention in recent years due to their zero standby power, resilience to power failures, and instant-on feature. One design challenge of NV processors is the excess area needed by NV registers. This paper introduces a parallel compare and compress (PaCC) architecture to reduce such excess area. A key component of the PaCC architecture is a new codec which effectively balances area and performance. In addition, the PaCC architecture includes a configurable state table to support reference vector selection for different applications. With the proposed vector selection algorithm, the PaCC architecture can outperform other vector selection approaches by over 59% in terms of reduction in the number of NV registers. The proposed architecture has been fully realized at the circuit level and synthesized for the Rohm's 0.13-μm ferroelectric-CMOS hybrid process. Results demonstrate that the design can reduce the number of NV registers by 70%-80% with less than 1% overflow possibility, which leads to up to 30% processor area saving. The overall approach is applicable to any NV processor design regardless of the NV material used.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results from the review were compiled into an IoT architecture that represents a wide range of current solutions in agro-industrial and environmental fields that are motivated by the need to identify application areas, trends, architectures and open challenges in these two fields.

336 citations

Journal ArticleDOI
19 Oct 2020
TL;DR: In this article, the authors examine the potential of the ferroelectric field-effect transistor technologies in current embedded non-volatile memory applications and future in-memory, biomimetic and alternative computing models.
Abstract: The discovery of ferroelectricity in oxides that are compatible with modern semiconductor manufacturing processes, such as hafnium oxide, has led to a re-emergence of the ferroelectric field-effect transistor in advanced microelectronics. A ferroelectric field-effect transistor combines a ferroelectric material with a semiconductor in a transistor structure. In doing so, it merges logic and memory functionalities at the single-device level, delivering some of the most pressing hardware-level demands for emerging computing paradigms. Here, we examine the potential of the ferroelectric field-effect transistor technologies in current embedded non-volatile memory applications and future in-memory, biomimetic and alternative computing models. We highlight the material- and device-level challenges involved in high-volume manufacturing in advanced technology nodes (≤10 nm), which are reminiscent of those encountered in the early days of high-K-metal-gate transistor development. We argue that the ferroelectric field-effect transistors can be a key hardware component in the future of computing, providing a new approach to electronics that we term ferroelectronics. This Perspective examines the use of ferroelectric field-effect transistor technologies in current embedded non-volatile memory applications and future in-memory, biomimetic and alternative computing models, arguing that the devices will be a key component in the development of data-centric computing.

308 citations

Journal ArticleDOI
TL;DR: The proposed system with solar energy harvesting demonstrates that long-term continuous medical monitoring based on WBAN is possible provided that the subject stays outside for a short period of time in a day.
Abstract: Internet of Things (IoT) is a new technological paradigm that can connect things from various fields through the Internet. For the IoT connected healthcare applications, the wireless body area network (WBAN) is gaining popularity as wearable devices spring into the market. This paper proposes a wearable sensor node with solar energy harvesting and Bluetooth low energy transmission that enables the implementation of an autonomous WBAN. Multiple sensor nodes can be deployed on different positions of the body to measure the subject’s body temperature distribution, heartbeat, and detect falls. A web-based smartphone application is also developed for displaying the sensor data and fall notification. To extend the lifetime of the wearable sensor node, a flexible solar energy harvester with an output-based maximum power point tracking technique is used to power the sensor node. Experimental results show that the wearable sensor node works well when powered by the solar energy harvester. The autonomous 24 h operation is achieved with the experimental results. The proposed system with solar energy harvesting demonstrates that long-term continuous medical monitoring based on WBAN is possible provided that the subject stays outside for a short period of time in a day.

272 citations

Proceedings ArticleDOI
09 Mar 2015
TL;DR: The simulation platform in this paper is calibrated using measured results from a fabricated nonvolatile processor and used to explore the design space for a nonVolatile processor with different architectures, different input power sources, and policies for maximizing forward progress.
Abstract: Energy harvesting has been widely investigated as a promising method of providing power for ultra-low-power applications. Such energy sources include solar energy, radio-frequency (RF) radiation, piezoelectricity, thermal gradients, etc. However, the power supplied by these sources is highly unreliable and dependent upon ambient environment factors. Hence, it is necessary to develop specialized systems that are tolerant to this power variation, and also capable of making forward progress on the computation tasks. The simulation platform in this paper is calibrated using measured results from a fabricated nonvolatile processor and used to explore the design space for a nonvolatile processor with different architectures, different input power sources, and policies for maximizing forward progress.

225 citations

Journal ArticleDOI
TL;DR: A thorough review of the existing standards and industrial protocols is presented and a critical evaluation of potential of these standards and protocols are given along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities.
Abstract: In recent years, industrial wireless sensor networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems, and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment, and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper, a detailed discussion on design objectives, challenges, and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines, and possible hazards in industrial atmosphere are discussed. This paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. This paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs.

211 citations