scispace - formally typeset
Search or ask a question
Author

Yirui Wang

Bio: Yirui Wang is an academic researcher from University of Toyama. The author has contributed to research in topics: Computer science & Population. The author has an hindex of 12, co-authored 22 publications receiving 752 citations. Previous affiliations of Yirui Wang include Penn State College of Information Sciences and Technology & Ningbo University.

Papers
More filters
Journal ArticleDOI
TL;DR: Six learning algorithms including biogeography-based optimization, particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, and population-based incremental learning are used to train a new dendritic neuron model (DNM) and are suggested to make DNM more powerful in solving classification, approximation, and prediction problems.
Abstract: An artificial neural network (ANN) that mimics the information processing mechanisms and procedures of neurons in human brains has achieved a great success in many fields, e.g., classification, prediction, and control. However, traditional ANNs suffer from many problems, such as the hard understanding problem, the slow and difficult training problems, and the difficulty to scale them up. These problems motivate us to develop a new dendritic neuron model (DNM) by considering the nonlinearity of synapses, not only for a better understanding of a biological neuronal system, but also for providing a more useful method for solving practical problems. To achieve its better performance for solving problems, six learning algorithms including biogeography-based optimization, particle swarm optimization, genetic algorithm, ant colony optimization, evolutionary strategy, and population-based incremental learning are for the first time used to train it. The best combination of its user-defined parameters has been systemically investigated by using the Taguchi’s experimental design method. The experiments on 14 different problems involving classification, approximation, and prediction are conducted by using a multilayer perceptron and the proposed DNM. The results suggest that the proposed learning algorithms are effective and promising for training DNM and thus make DNM more powerful in solving classification, approximation, and prediction problems.

517 citations

Journal ArticleDOI
TL;DR: A novel JADE variant is presented by incorporating chaotic local search (CLS) mechanisms into JADE to alleviate this problem and has a superior performance in comparison with JADE and some other state-of-the-art optimization algorithms.
Abstract: JADE is a differential evolution (DE) algorithm and has been shown to be very competitive in comparison with other evolutionary optimization algorithms. However, it suffers from the premature convergence problem and is easily trapped into local optima. This article presents a novel JADE variant by incorporating chaotic local search (CLS) mechanisms into JADE to alleviate this problem. Taking advantages of the ergodicity and nonrepetitious nature of chaos, it can diversify the population and thus has a chance to explore a huge search space. Because of the inherent local exploitation ability, its embedded CLS can exploit a small region to refine solutions obtained by JADE. Hence, it can well balance the exploration and exploitation in a search process and further improve its performance. Four kinds of its CLS incorporation schemes are studied. Multiple chaotic maps are individually, randomly, parallelly, and memory-selectively incorporated into CLS. Experimental and statistical analyses are performed on a set of 53 benchmark functions and four real-world optimization problems. Results show that it has a superior performance in comparison with JADE and some other state-of-the-art optimization algorithms.

188 citations

Journal ArticleDOI
TL;DR: Inspired by the two-layered structure of GSA, four layers consisting of population, iteration-best, personal-best and global-best layers are constructed and dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population.
Abstract: A gravitational search algorithm ( GSA ) uses gravitational force among individuals to evolve population. Though GSA is an effective population-based algorithm, it exhibits low search performance and premature convergence. To ameliorate these issues, this work proposes a multi-layered GSA called MLGSA. Inspired by the two-layered structure of GSA, four layers consisting of population, iteration-best, personal-best and global-best layers are constructed. Hierarchical interactions among four layers are dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population. Performance comparison between MLGSA and nine existing GSA variants on twenty-nine CEC2017 test functions with low, medium and high dimensions demonstrates that MLGSA is the most competitive one. It is also compared with four particle swarm optimization variants to verify its excellent performance. Moreover, the analysis of hierarchical interactions is discussed to illustrate the influence of a complete hierarchy on its performance. The relationship between its population diversity and fitness diversity is analyzed to clarify its search performance. Its computational complexity is given to show its efficiency. Finally, it is applied to twenty-two CEC2011 real-world optimization problems to show its practicality.

123 citations

Journal ArticleDOI
TL;DR: A novel method which incorporates BSO with chaotic local search (CLS) to make BSO break the stagnation and keep the population’s diversity simultaneously, thus realizing a better balance between exploration and exploitation.
Abstract: Brain storm optimization (BSO) is a newly proposed optimization algorithm inspired by human being brainstorming process. After its appearance, much attention has been paid on and many attempts to improve its performance have been made. The search ability of BSO has been enhanced, but it still suffers from sticking into stagnation during exploitation phase. This paper proposes a novel method which incorporates BSO with chaotic local search (CLS) with the purpose of alleviating this situation. Chaos has properties of randomicity and ergodicity. These properties ensure CLS can explore every state of the search space if the search time duration is long enough. The incorporation of CLS can make BSO break the stagnation and keep the population’s diversity simultaneously, thus realizing a better balance between exploration and exploitation. Twelve chaotic maps are randomly selected for increasing the diversity of the search mechanism. Experimental and statistical results based on 25 benchmark functions demonstrate the superiority of the proposed method.

104 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the effective property of HGSA due to its hierarchical structure and gravitational constant, and the time complexity analysis concludes that HGSA has the same computational efficiency in comparison with other GSAs.
Abstract: Gravitational search algorithm (GSA) inspired by the law of gravity is a swarm intelligent optimization algorithm. It utilizes the gravitational force to implement the interaction and evolution of individuals. The conventional GSA achieves several successful applications, but it still faces a premature convergence and a low search ability. To address these two issues, a hierarchical GSA with an effective gravitational constant (HGSA) is proposed from the viewpoint of population topology. Three contrastive experiments are carried out to analyze the performances between HGSA and other GSAs, heuristic algorithms and particle swarm optimizations (PSOs) on function optimization. Experimental results demonstrate the effective property of HGSA due to its hierarchical structure and gravitational constant. A component-wise experiment is also established to further verify the superiority of HGSA. Additionally, HGSA is applied to several real-world optimization problems so as to verify its good practicability and performance. Finally, the time complexity analysis is discussed to conclude that HGSA has the same computational efficiency in comparison with other GSAs.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of swarm intelligence algorithms can be found in this paper, where the authors highlight the functions and strengths from 127 research literatures and briefly provide the description of their successful applications in optimization problems of engineering fields.
Abstract: Swarm intelligence algorithms are a subset of the artificial intelligence (AI) field, which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications. In the past decades, numerous swarm intelligence algorithms have been developed, including ant colony optimization (ACO), particle swarm optimization (PSO), artificial fish swarm (AFS), bacterial foraging optimization (BFO), and artificial bee colony (ABC). This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures. It provides an overview of the various swarm intelligence algorithms and their advanced developments, and briefly provides the description of their successful applications in optimization problems of engineering fields. Finally, opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.

247 citations

Journal ArticleDOI
TL;DR: This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods, and classify existing literatures with a detailed taxonomy including representation and Classification methods, as well as the datasets they used.
Abstract: Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research.

239 citations

Journal ArticleDOI
TL;DR: A novel JADE variant is presented by incorporating chaotic local search (CLS) mechanisms into JADE to alleviate this problem and has a superior performance in comparison with JADE and some other state-of-the-art optimization algorithms.
Abstract: JADE is a differential evolution (DE) algorithm and has been shown to be very competitive in comparison with other evolutionary optimization algorithms. However, it suffers from the premature convergence problem and is easily trapped into local optima. This article presents a novel JADE variant by incorporating chaotic local search (CLS) mechanisms into JADE to alleviate this problem. Taking advantages of the ergodicity and nonrepetitious nature of chaos, it can diversify the population and thus has a chance to explore a huge search space. Because of the inherent local exploitation ability, its embedded CLS can exploit a small region to refine solutions obtained by JADE. Hence, it can well balance the exploration and exploitation in a search process and further improve its performance. Four kinds of its CLS incorporation schemes are studied. Multiple chaotic maps are individually, randomly, parallelly, and memory-selectively incorporated into CLS. Experimental and statistical analyses are performed on a set of 53 benchmark functions and four real-world optimization problems. Results show that it has a superior performance in comparison with JADE and some other state-of-the-art optimization algorithms.

188 citations

Journal ArticleDOI
TL;DR: This work proposes an automatic detection method for COVID-19 infection based on chest X-ray images using different architectures of convolutional neural networks trained on ImageNet, and adapt them to behave as feature extractors for the X-Ray images.
Abstract: The new coronavirus ( COVID-19 ) , declared by the World Health Organization as a pandemic, has infected more than 1 million people and killed more than 50 thousand. An infection caused by COVID-19 can develop into pneumonia, which can be detected by a chest X-ray exam and should be treated appropriately. In this work, we propose an automatic detection method for COVID-19 infection based on chest X-ray images. The datasets constructed for this study are composed of 194 X-ray images of patients diagnosed with coronavirus and 194 X-ray images of healthy patients. Since few images of patients with COVID-19 are publicly available, we apply the concept of transfer learning for this task. We use different architectures of convolutional neural networks ( CNNs ) trained on ImageNet, and adapt them to behave as feature extractors for the X-ray images. Then, the CNNs are combined with consolidated machine learning methods, such as k-Nearest Neighbor, Bayes, Random Forest, multilayer perceptron ( MLP ) , and support vector machine ( SVM ) . The results show that, for one of the datasets, the extractor-classifier pair with the best performance is the MobileNet architecture with the SVM classifier using a linear kernel, which achieves an accuracy and an F1-score of 98.5 & . For the other dataset, the best pair is DenseNet201 with MLP, achieving an accuracy and an F1-score of 95.6 & . Thus, the proposed approach demonstrates efficiency in detecting COVID-19 in X-ray images.

167 citations

Journal ArticleDOI
TL;DR: An embedded feature selection method using the proposed weighted Gini index ( WGI) is proposed, which shows that F-statistic and Chi2 reach the best performance when only a few features are selected, and as the number of selected features increases, the proposed method has the highest probability of achieving the highest performance.
Abstract: Imbalanced data is one type of datasets that are frequently found in real-world applications, e.g., fraud detection and cancer diagnosis. For this type of datasets, improving the accuracy to identify their minority class is a critically important issue. Feature selection is one method to address this issue. An effective feature selection method can choose a subset of features that favor in the accurate determination of the minority class. A decision tree is a classifier that can be built up by using different splitting criteria. Its advantage is the ease of detecting which feature is used as a splitting node. Thus, it is possible to use a decision tree splitting criterion as a feature selection method. In this paper, an embedded feature selection method using our proposed weighted Gini index ( WGI ) is proposed. Its comparison results with Chi2, F-statistic and Gini index feature selection methods show that F-statistic and Chi2 reach the best performance when only a few features are selected. As the number of selected features increases, our proposed method has the highest probability of achieving the best performance. The area under a receiver operating characteristic curve ( ROC AUC ) and F-measure are used as evaluation criteria. Experimental results with two datasets show that ROC AUC performance can be high, even if only a few features are selected and used, and only changes slightly as more and more features are selected. However, the performance of Fmeasure achieves excellent performance only if 20 % or more of features are chosen. The results are helpful for practitioners to select a proper feature selection method when facing a practical problem.

157 citations