scispace - formally typeset
Search or ask a question
Author

Yishay Feldman

Bio: Yishay Feldman is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Nanoparticle & X-ray photoelectron spectroscopy. The author has an hindex of 38, co-authored 130 publications receiving 7007 citations. Previous affiliations of Yishay Feldman include London Centre for Nanotechnology & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
13 Jan 1995-Science
TL;DR: The gas-phase reaction between MoO3-x and H2S in a reducing atmosphere at elevated temperatures (800� to 950�C) has been used to synthesize large quantities of an almost pure nested inorganic fullerene (IF) phase of MoS2, obtaining a uniform IF phase with a relatively narrow size distribution.
Abstract: The gas-phase reaction between MoO3-x and H(2)S in a reducing atmosphere at elevated temperatures (800 degrees to 950 degrees C) has been used to synthesize large quantities of an almost pure nested inorganic fullerene (IF) phase of MoS(2). A uniform IF phase with a relatively narrow size distribution was obtained. The synthesis of IFs appears to require, in addition to careful control over the growth conditions, a specific turbulent flow regime. The x-ray spectra of the different samples show that, as the average size of the IF decreases, the van der Waals gap along the c axis increases, largely because of the strain involved in folding of the lamella. Large quantities of quite uniform nanotubes were obtained under modified preparation conditions.

1,103 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the observation of single nanotube fragmentation, under tensile stresses, using nanotubes-containing thin polymeric films, and they estimate that the multi-wall multi-nanotube-matrix stress transfer efficiency is at least one order of magnitude larger than in conventional fiber-based composites.
Abstract: We report the observation of single nanotube fragmentation, under tensile stresses, using nanotube-containing thin polymeric films. Similar fragmentation tests with single fibers instead of nanotubes are routinely performed to study the fiber-matrix stress transfer ability in fiber composite materials, and thus the efficiency and quality of composite interfaces. The multiwall nanotube-matrix stress transfer efficiency is estimated to be at least one order of magnitude larger than in conventional fiber-based composites.

897 citations

Journal ArticleDOI
19 Jun 1997-Nature
TL;DR: In this article, hollow nanoparticles (HNs) of metal dichalcogenides MX2 have been used as solid lubricants to reduce wear in situations where the use of liquid lubricants is either impractical or inadequate, such as in vacuum, space technology or automotive transport.
Abstract: Solid lubricants fill a special niche in reducing wear in situations where the use of liquid lubricants is either impractical or inadequate, such as in vacuum, space technology or automotive transport. Metal dichalcogenides MX2 (where M is, for instance, Mo or W and X is S or Se) are widely used as solid lubricants. These materials are characterized by a layered structure with weak (van der Waals) inter-layer forces that allow easy, low-strength shearing1,2. Within the past few years, hollow nanoparticles (HNs) of MX2 with structures similar to those of nested carbon fullerenes and nanotubes have been synthesized3,4. Here we show that these materials can act as effective solid lubricants: HN-WS2 outperforms the solid lubricants 2H-MoS2 and 2H-WS2 in every respect (friction, wear and lifetime of the lubricant) under varied test conditions. We attribute the outstanding performance of HN-WS2 to its chemical inertness and the hollow cage structure, which imparts elasticity and allows the particles to roll rather than to slide.

779 citations

Journal ArticleDOI
01 Aug 2003-Wear
TL;DR: In this paper, the effect of the IF in oil was studied using pin-on-disk tester in the regime of mixed lubrication and the interaction between the full film and the asperity contact fractions has been considered and the time evolution of the friction force was evaluated.

287 citations

Journal ArticleDOI
01 Apr 1999-Wear
TL;DR: In this paper, inorganic fullerene-like (IF) supramolecules of metal dichalcogenide MX2 (M=Mo, W, etc.; X=S, Se), materials with structures closely related to (nested) carbon fullerenes and nanotubes have been synthesized.

259 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
04 Feb 2011-Science
TL;DR: It is shown that WS2 and MoS2 effectively reinforce polymers, whereas WS2/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.
Abstract: If they could be easily exfoliated, layered materials would become a diverse source of two-dimensional crystals whose properties would be useful in applications ranging from electronics to energy storage. We show that layered compounds such as MoS2, WS2, MoSe2, MoTe2, TaSe2, NbSe2, NiTe2, BN, and Bi2Te3 can be efficiently dispersed in common solvents and can be deposited as individual flakes or formed into films. Electron microscopy strongly suggests that the material is exfoliated into individual layers. By blending this material with suspensions of other nanomaterials or polymer solutions, we can prepare hybrid dispersions or composites, which can be cast into films. We show that WS2 and MoS2 effectively reinforce polymers, whereas WS2/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.

6,043 citations

Journal ArticleDOI
09 Mar 2001-Science
TL;DR: The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures, which could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides.
Abstract: Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.

5,677 citations