scispace - formally typeset
Search or ask a question
Author

Yiting Cao

Bio: Yiting Cao is an academic researcher from Duke University. The author has contributed to research in topics: Angiogenesis & Neovascularization. The author has an hindex of 22, co-authored 29 publications receiving 4862 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that hypoxia-inducible factor HIF2alpha and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to non-stem tumor cells and normal neural progenitors.

1,215 citations

Journal ArticleDOI
TL;DR: A constant theme emerges: inhibition of HIF1 activity will have therapeutic benefit, both spatially and temporally, in the hypoxic environment of tumours.
Abstract: Hypoxia and free radicals, such as reactive oxygen and nitrogen species, can alter the function and/or activity of the transcription factor hypoxia-inducible factor 1 (HIF1). Interplay between free radicals, hypoxia and HIF1 activity is complex and can influence the earliest stages of tumour development. The hypoxic environment of tumours is heterogeneous, both spatially and temporally, and can change in response to cytotoxic therapy. Free radicals created by hypoxia, hypoxia-reoxygenation cycling and immune cell infiltration after cytotoxic therapy strongly influence HIF1 activity. HIF1 can then promote endothelial and tumour cell survival. As discussed here, a constant theme emerges: inhibition of HIF1 activity will have therapeutic benefit.

945 citations

Journal ArticleDOI
TL;DR: Novel pathways contributing significantly to the understanding of HIF-1 regulation which may be major determinants of tumor radiosensitivity, potentially having high clinical relevance are described.

928 citations

Journal ArticleDOI
TL;DR: It is revealed that HIF-1 plays an important role in determining tumor radioresponsiveness through regulating four distinct processes, including promoting ATP metabolism, proliferation, and p53 activation, which has a radiosensitizing effect on tumors.

351 citations

Journal ArticleDOI
TL;DR: The data indicate that IL6 signaling contributes to glioma malignancy through the promotion of GSC growth and survival, and that targeting IL6 may offer benefit for gliomas patients.
Abstract: Glioblastomas are the most common and most lethal primary brain tumor. Recent studies implicate an important role for a restricted population of neoplastic cells (glioma stem cells (GSCs)) in glioma maintenance and recurrence. We now demonstrate that GSCs preferentially express two interleukin 6 (IL6) receptors: IL6 receptor alpha (IL6R alpha) and glycoprotein 130 (gp130). Targeting IL6R alpha or IL6 ligand expression in GSCs with the use of short hairpin RNAs (shRNAs) significantly reduces growth and neurosphere formation capacity while increasing apoptosis. Perturbation of IL6 signaling in GSCs attenuates signal transducers and activators of transcription three (STAT3) activation, and small molecule inhibitors of STAT3 potently induce GSC apoptosis. These data indicate that STAT3 is a downstream mediator of prosurvival IL6 signals in GSCs. Targeting of IL6R alpha or IL6 expression in GSCs increases the survival of mice bearing intracranial human glioma xenografts. IL6 is clinically significant because elevated IL6 ligand and receptor expression are associated with poor glioma patient survival. The potential utility of anti-IL6 therapies is demonstrated by decreased growth of subcutaneous human GSC-derived xenografts treated with IL6 antibody. Together, our data indicate that IL6 signaling contributes to glioma malignancy through the promotion of GSC growth and survival, and that targeting IL6 may offer benefit for glioma patients.

301 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions, which leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity.
Abstract: If carcinogenesis occurs by somatic evolution, then common components of the cancer phenotype result from active selection and must, therefore, confer a significant growth advantage. A near-universal property of primary and metastatic cancers is upregulation of glycolysis, resulting in increased glucose consumption, which can be observed with clinical tumour imaging. We propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions. However, upregulation of glycolysis leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity. Subsequent cell populations with upregulated glycolysis and acid resistance have a powerful growth advantage, which promotes unconstrained proliferation and invasion.

4,361 citations

Journal ArticleDOI
20 Jun 2014-Science
TL;DR: The genome sequence of single cells isolated from brain glioblastomas was examined, which revealed shared chromosomal changes but also extensive transcription variation, including genes related to signaling, which represent potential therapeutic targets.
Abstract: Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.

3,475 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations