scispace - formally typeset
Search or ask a question
Author

Yiwen Li

Bio: Yiwen Li is an academic researcher from Sichuan University. The author has contributed to research in topics: Medicine & Dendrimer. The author has an hindex of 45, co-authored 141 publications receiving 5873 citations. Previous affiliations of Yiwen Li include University of Akron & University of Science and Technology of China.


Papers
More filters
Journal ArticleDOI
TL;DR: This critical review focuses on the design of biocompatible dendrimer-based nanoplatforms for targeted cancer diagnosis and therapy and theBiocompatibility aspects of d endrimers such as nanotoxicity, long-term circulation, and degradation are discussed.
Abstract: In the past decade, nanomedicine with its promise of improved therapy and diagnostics has revolutionized conventional health care and medical technology. Dendrimers and dendrimer-based therapeutics are outstanding candidates in this exciting field as more and more biological systems have benefited from these starburst molecules. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumour via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Imaging agents including MRI contrast agents, radionuclide probes, computed tomography contrast agents, and fluorescent dyes are combined with the multifunctional nanomedicine for targeted therapy with simultaneous cancer diagnosis. However, an important question reported with dendrimer-based therapeutics as well as other nanomedicines to date is the long-term viability and biocompatibility of the nanotherapeutics. This critical review focuses on the design of biocompatible dendrimers for cancer diagnosis and therapy. The biocompatibility aspects of dendrimers such as nanotoxicity, long-term circulation, and degradation are discussed. The construction of novel dendrimers with biocompatible components, and the surface modification of commercially available dendrimers by PEGylation, acetylation, glycosylation, and amino acid functionalization have been proposed as available strategies to solve the safety problem of dendrimer-based nanotherapeutics. Also, exciting opportunities and challenges on the development of dendrimer-based nanoplatforms for targeted cancer diagnosis and therapy are reviewed (404 references).

459 citations

Journal ArticleDOI
24 Apr 2015-Science
TL;DR: In this paper, the selective assembly behaviors of a class of precisely defined, nanosized giant tetrahedra constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework were investigated.
Abstract: Self-assembly of rigid building blocks with explicit shape and symmetry is substantially influenced by the geometric factors and remains largely unexplored. We report the selective assembly behaviors of a class of precisely defined, nanosized giant tetrahedra constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces precise positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper A15 phase, which resembles the essential structural features of certain metal alloys but at a larger length scale. These results demonstrate the power of persistent molecular geometry with balanced enthalpy and entropy in creating thermodynamically stable supramolecular lattices with properties distinct from those of other self-assembling soft materials.

315 citations

Journal ArticleDOI
TL;DR: In this article, a unique approach to the design and synthesis of giant molecules based on "nanoatoms" for engineering structures across multiple length scales and controlling their macroscopic properties is presented.
Abstract: In this Perspective, we present a unique approach to the design and synthesis of giant molecules based on “nanoatoms” for engineering structures across multiple length scales and controlling their macroscopic properties. Herein, “nanoatoms” refer to shape-persistent molecular nanoparticles (MNPs) with precisely defined chemical structures and surface functionalities that can serve as elemental building blocks for the precision synthesis of giant molecules by methods such as sequential “click” approach. Typical “nanoatoms” include those MNPs based on fullerenes, polyhedral oligomeric silsesquioxanes, polyoxometalates, and folded globular proteins. The resulting giant molecules are precisely defined macromolecules. They include, but are not limited to, giant surfactants, giant shape amphiphiles, and giant polyhedra. Giant surfactants are polymer tail-tethered “nanoatoms” where the two components have drastic chemical differences to impart amphiphilicity. Giant shape amphiphiles not only are built up by cova...

292 citations

Journal ArticleDOI
12 May 2015-ACS Nano
TL;DR: The coloration mechanism of deposited films are demonstrated and it is shown that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).
Abstract: Structural colors arising from interactions of light with submicron scale periodic structures have been found in many species across all taxa, serving multiple biological functions including sexual signaling, camouflage, and aposema- tism. Directly inspired by the extensive use of self-assembled melanosomes to produce colors in avian feathers, we set out to synthesize and assemble poly- dopamine-based synthetic melanin nanoparticles in an effort to fabricate colored films. We have quantitatively demonstrated that synthetic melanin nanoparticles have a high refractive index and broad absorption spanning across the UVvisible range, similar to natural melanins. Utilizing a thin-film interference model, we demonstrated the coloration mechanism of deposited films and showed that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).

232 citations

Journal ArticleDOI
26 Mar 2020-Small
TL;DR: Polydopamine nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating.
Abstract: Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.

215 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: This tutorial review highlights the importance of well-defined chemistries, with detailed ties to specific biological hurdles and opportunities, in the design of nanostructures for various biomedical delivery applications.
Abstract: Polymeric nanoparticles-based therapeutics show great promise in the treatment of a wide range of diseases, due to the flexibility in which their structures can be modified, with intricate definition over their compositions, structures and properties. Advances in polymerization chemistries and the application of reactive, efficient and orthogonal chemical modification reactions have enabled the engineering of multifunctional polymeric nanoparticles with precise control over the architectures of the individual polymer components, to direct their assembly and subsequent transformations into nanoparticles of selective overall shapes, sizes, internal morphologies, external surface charges and functionalizations. In addition, incorporation of certain functionalities can modulate the responsiveness of these nanostructures to specific stimuli through the use of remote activation. Furthermore, they can be equipped with smart components to allow their delivery beyond certain biological barriers, such as skin, mucus, blood, extracellular matrix, cellular and subcellular organelles. This tutorial review highlights the importance of well-defined chemistries, with detailed ties to specific biological hurdles and opportunities, in the design of nanostructures for various biomedical delivery applications.

1,391 citations