scispace - formally typeset
Search or ask a question
Author

Yong-Bin Yan

Bio: Yong-Bin Yan is an academic researcher from Tsinghua University. The author has contributed to research in topics: Crystallin & Protein aggregation. The author has an hindex of 28, co-authored 117 publications receiving 2765 citations. Previous affiliations of Yong-Bin Yan include Fourth Military Medical University.


Papers
More filters
Journal ArticleDOI
30 Jul 2015-Nature
TL;DR: In this paper, the authors identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts.
Abstract: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people1, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.

331 citations

Journal ArticleDOI
TL;DR: The results hereby provide a new insight into the regulation mechanisms of the DRE-mediated signaling pathway in response to cold stress and suggest that the trans-active Group I DREBs were expressed at the early stage of cold stress to open the D RE-mediated signaled pathway in cold stress, whereas theTrans-inactive Group II D REBs were expression at the later stage to close the signal pathway in a competitive manner.

137 citations

Journal ArticleDOI
TL;DR: The crystal structure of the AvrPtoB-BAK1 complex was reported, which revealed structural similarity between these two AvrptoB domains, suggesting that they arose by intragenic duplication, shedding light on a structural mechanism underlying host-pathogen coevolution.

122 citations

Journal ArticleDOI
TL;DR: The sequential events occurring during thermal unfolding and aggregation process of hemoglobin were studied by two-dimensional infrared correlation spectroscopy and suggested that protein thermal aggregation involves distinct regions.

100 citations

Journal ArticleDOI
TL;DR: Results suggested that Ala37 might play a crucial role in the DNA binding or the stability of the ERF/AP2 domain.

91 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants, and the mechanism of drought resistance in plants on a morphological, physiological and molecular basis are reviewed.
Abstract: Scarcity of water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Here, we have reviewed the effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants. This article also describes the mechanism of drought resistance in plants on a morphological, physiological and molecular basis. Various management strategies have been proposed to cope with drought stress. Drought stress reduces leaf size, stem extension and root proliferation, disturbs plant water relations and reduces water-use efficiency. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress, thus making it a complex phenomenon. CO2 assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of CO2 fixation and adenosine triphosphate synthesis. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on the tissues as both processes generate reactive oxygen species. Injury caused by reactive oxygen species to biological macromolecules under drought stress is among the major deterrents to growth. Plants display a range of mechanisms to withstand drought stress. The major mechanisms include curtailed water loss by increased diffusive resistance, enhanced water uptake with prolific and deep root systems and its efficient use, and smaller and succulent leaves to reduce the transpirational loss. Among the nutrients, potassium ions help in osmotic adjustment; silicon increases root endodermal silicification and improves the cell water balance. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols, are crucial to sustain cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberrellins, cytokinin and abscisic acid modulate the plant responses towards drought. Polyamines, citrulline and several enzymes act as antioxidants and reduce the adverse effects of water deficit. At molecular levels several drought-responsive genes and transcription factors have been identified, such as the dehydration-responsive element-binding gene, aquaporin, late embryogenesis abundant proteins and dehydrins. Plant drought tolerance can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection and exogenous application of hormones and osmoprotectants to seed or growing plants, as well as engineering for drought resistance.

3,488 citations

Journal ArticleDOI
TL;DR: A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have been presented here and a side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena.
Abstract: Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought stress are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.

1,354 citations

Journal ArticleDOI
TL;DR: Recent advances in the identification of upstream receptors/sensors and downstream MAPK substrates revealed the molecular mechanisms underlying MAPK functions in plant disease resistance and emerged as battlegrounds of plant-pathogen interactions.
Abstract: Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules downstream of receptors/sensors that transduce extracellular stimuli into intracellular responses in eukaryotes. Plant MAPK cascades play pivotal roles in signaling plant defense against pathogen attack. In this review, we summarize recent advances in the identification of upstream receptors/sensors and downstream MAPK substrates. These findings revealed the molecular mechanisms underlying MAPK functions in plant disease resistance. MAPK cascades have also emerged as battlegrounds of plant-pathogen interactions. Activation of MAPKs is one of the earliest signaling events after plant sensing of pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) and pathogen effectors. MAPK cascades are involved in signaling multiple defense responses, including the biosynthesis/signaling of plant stress/defense hormones, reactive oxygen species (ROS) generation, stomatal closure, defense gene activation, phytoalexin biosynthes...

897 citations

Journal ArticleDOI
TL;DR: The mechanisms that fine-tune immune signalling to maintain immune homeostasis are described and how the innate ability of plant cells to monitor the integrity of key immune components can lead to autoimmune phenotypes following genetic or pathogen-induced perturbations of these components are discussed.
Abstract: Plants depend on cell-autonomous innate immune mechanisms for protection against infection and these pathways are activated in response to pattern recognition receptor (PRR) engagement. However, as is the case in mammals, PRR signalling in plants must be tightly controlled to avoid pathological outcomes; this Review focuses on the mechanisms that regulate plant PRR signalling.

841 citations

Journal ArticleDOI
TL;DR: This review summarizes recent studies highlighting the role of the DRE-binding family of TFs in the adaptive responses to different abiotic stresses and their structural and functional characters with emphasis on the expression and regulation of DREBs.
Abstract: Abiotic stresses such as drought, high salinity, and cold are common adverse environmental conditions that significantly influence plant growth and productivity worldwide. The phytohormone abscisic acid (ABA) plays an important role in physiological and developmental responses as well as in co-ordinating various stress signal transduction pathways in plants. DREBs (dehydration responsive element binding) are important plant transcription factors (TFs) that regulate the expression of many stress-inducible genes mostly in an ABA-independent manner and play a critical role in improving the abiotic stress tolerance of plants by interacting with a DRE/CRT cis-element present in the promoter region of various abiotic stress-responsive genes. This review summarizes recent studies highlighting the role of the DRE-binding family of TFs in the adaptive responses to different abiotic stresses and their structural and functional characters with emphasis on the expression and regulation of DREBs. The practical and application value of DREBs in crop improvement, such as stress tolerance engineering as well as marker-assisted selection (MAS), has also been discussed.

754 citations