scispace - formally typeset
Search or ask a question
Author

Yong Wang

Bio: Yong Wang is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Dielectric & Polyvinylidene fluoride. The author has an hindex of 12, co-authored 15 publications receiving 1581 citations.

Papers
More filters
Journal ArticleDOI
08 Aug 2008-Science
TL;DR: It was determined that a large ECE can be realized in the ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer at temperatures above the feroelectric-paraelectric transition (above 70°C), where an isothermal entropy change of more than 55 joules per kilogram per kelvin degree and adiabatic temperature change were observed.
Abstract: Applying an electrical field to a polar polymer may induce a large change in the dipolar ordering, and if the associated entropy changes are large, they can be explored in cooling applications. With the use of the Maxwell relation between the pyroelectric coefficient and the electrocaloric effect (ECE), it was determined that a large ECE can be realized in the ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer at temperatures above the ferroelectric-paraelectric transition (above 70°C), where an isothermal entropy change of more than 55 joules per kilogram per kelvin degree and adiabatic temperature change of more than 12°C were observed. We further showed that a similar level of ECE near room temperature can be achieved by working with the relaxor ferroelectric polymer of P(VDF-TrFE-chlorofluoroethylene).

985 citations

Journal ArticleDOI
Yong Wang1, Xin Zhou1, Qin Chen1, Baojin Chu1, Qiming Zhang1 
TL;DR: Aromatic polyurea thin films were developed through vapor phase deposition, exhibiting relatively high dielectric constant, low loss, high breakdown field (>800 MV/m) and consequently high energy density (>12 J/cm3) as mentioned in this paper.
Abstract: High energy density dielectric materials are desirable for capacitors and other energy storage systems. Two approaches were developed to achieve high electric energy density: explore high dielectric constant (K) materials and improve high operation electric field. Relaxor ferroelectric polyvinylidene fluoride (PVDF) based copolymers P(VDF-HFP), P(VDF-CTFE) and terpolymer P(VDF-TrFE-CFE) have been proven to possess high electric energy density. An energy density of over 25 J/cm3 has been achieved in PVDF-based polymers, which represents the state of art in high energy density polymers. Aromatic polyurea thin films were developed through vapor phase deposition, exhibiting relatively high dielectric constant, low loss, high breakdown field (>800 MV/m) and consequently high energy density (>12 J/cm3). Its thermal stability up to 200°C and high charge-discharge efficiency (>90%) make it attractive for high temperature capacitors. Investigation through SEM, AFM and other experiments indicated unbalanced aromatic polyurea could exhibit apparent high-K (~15) due to the non-uniformity of film thickness and surface morphology. This article reviews the recent development of these high performance polymers.

263 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a study of active energy harvesting, a type of energy harvesting approach which uses switchmode power electronics to control the voltage and/or charge on a piezoelectric device relative to the mechanical input for optimized energy conversion.
Abstract: In piezoelectric energy harvesting systems, the energy harvesting circuit is the interface between a piezoelectric device and an electrical load. A conventional view of this interface is based on impedance matching concepts. In fact, an energy harvesting circuit can also apply electrical boundary conditions, such as voltage and charge, to the piezoelectric device for each energy conversion cycle. An optimized electrical boundary condition can therefore increase the mechanical energy flow into the device and the energy conversion efficiency of the device. We present a study of active energy harvesting, a type of energy harvesting approach which uses switch-mode power electronics to control the voltage and/or charge on a piezoelectric device relative to the mechanical input for optimized energy conversion. Under quasi-static assumptions, a model based on the electromechanical boundary conditions is established. Some practical limiting factors of active energy harvesting, due to device limitations and the ef...

123 citations

Journal ArticleDOI
Qin Chen1, Yong Wang1, Xin Zhou1, Qiming Zhang, Shihai Zhang 
TL;DR: In this article, it was observed that the energy loss remains very small under low and medium electric fields but dramatically increases at high field which is believed to be due to tunneling current.
Abstract: In several low loss dielectric materials, it was observed that the energy loss remains very small under low and medium electric fields but dramatically increases at high field which is believed to be due to tunneling current. The increase of tunneling current at high field is due to the decrease of barrier width and height and is a universal phenomenon in all dielectric materials. Due to the requirement of high energy efficiency, high field conduction places a limit for the maximum operation field, which could be lower than the breakdown field and act as the limiting factor of energy density.

115 citations

Journal ArticleDOI
Kailiang Ren1, Sheng Liu1, Minren Lin1, Yong Wang1, Qiming Zhang1 
TL;DR: In this paper, an electrostrictive terpolymer (EAP) actuator was developed for full page Braille display and graphic display, where a screen printing deposition method was developed which enables direct deposition of very thin conductive polymer electrode layer (<0.1 μm) with strong bonding to the terpolymers surface and short fabrication time.
Abstract: The large strain, high elastic modulus, and easy processing of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) electrostrictive terpolymer make it very attractive to replace low strain piezoceramics and piezopolymers in many applications with much improved performance. In this paper, a compact polymer actuator is developed utilizing the electrostrictive terpolymer, which is suitable for full page Braille display and graphic display. Key issues related to the reliability of electroactive polymers used in the compact actuators and for the mass fabrication of these polymer actuators are investigated. Making use of a recently developed conductive polymer, a screen printing deposition method was developed which enables direct deposition of very thin conductive polymer electrode layer (<0.1 μm) with strong bonding to the terpolymer surface and short fabrication time. It was observed that the thin conductive polymer electrodes lead to the self-healing of the polymer after electric breakdown. An electroactive polymer (EAP) compact Braille actuator was designed and fabricated with these terpolymer films wound on a spring core. The test results demonstrate that the EAP Braille actuator meets all the functional requirements of actuators for refreshable full Braille display, which offers compact size, reduced cost and weight.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the main characteristics of the electroactive phases of polyvinylidene fluoride and copolymers are summarized, and some interesting potential applications and processing challenges are discussed.
Abstract: Poly(vinylidene fluoride), PVDF, and its copolymers are the family of polymers with the highest dielectric constant and electroactive response, including piezoelectric, pyroelectric and ferroelectric effects. The electroactive properties are increasingly important in a wide range of applications such as in biomedicine, energy generation and storage, monitoring and control, and include the development of sensors and actuators, separator and filtration membranes and smart scaffolds, among others. For many of these applications the polymer should be in one of its electroactive phases. This review presents the developments and summarizes the main characteristics of the electroactive phases of PVDF and copolymers, indicates the different processing strategies as well as the way in which the phase content is identified and quantified. Additionally, recent advances in the development of electroactive composites allowing novel effects, such as magnetoelectric responses, and opening new applications areas are presented. Finally, some of the more interesting potential applications and processing challenges are discussed.

2,242 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the important role and challenges of high-k polymer-matrix composites (PMC) in new technologies and discuss potential applications of highk PMC.
Abstract: There is an increasing need for high-permittivity (high-k) materials due to rapid development of electrical/electronic industry. It is well-known that single composition materials cannot meet the high-k need. The combination of dissimilar materials is expected to be an effective way to fabricate composites with high-k, especial for high-k polymer–matrix composites (PMC). This review paper focuses on the important role and challenges of high-k PMC in new technologies. The use of different materials in the PMC creates interfaces which have a crucial effect on final dielectric properties. Therefore it is necessary to understand dielectric properties and processing need before the high-k PMC can be made and applied commercially. Theoretical models for increasing dielectric permittivity are summarized and are used to explain the behavior of dielectric properties. The effects of fillers, fabrication processes and the nature of the interfaces between fillers and polymers are discussed. Potential applications of high-k PMC are also discussed.

1,412 citations

Journal ArticleDOI
TL;DR: A number of materials have been explored for their use as artificial muscles, but dielectric elastomers appear to provide the best combination of properties for true muscle-like actuation, and widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames.
Abstract: A number of materials have been explored for their use as artificial muscles Among these, dielectric elastomers (DEs) appear to provide the best combination of properties for true muscle-like actuation DEs behave as compliant capacitors, expanding in area and shrinking in thickness when a voltage is applied Materials combining very high energy densities, strains, and efficiencies have been known for some time To date, however, the widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames Recent advances seem poised to remove these restrictions and allow for the production of highly reliable, high-performance transducers for artificial muscle applications

1,299 citations

Journal ArticleDOI
TL;DR: Near-field electrospinning is used to direct-write poly(vinylidene fluoride) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties, rendering them potentially advantageous for sensing and actuation applications.
Abstract: Nanogenerators capable of converting energy from mechanical sources to electricity with high effective efficiency using low-cost, nonsemiconducting, organic nanomaterials are attractive for many applications, including energy harvesters. In this work, near-field electrospinning is used to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties. Under mechanical stretching, nanogenerators have shown repeatable and consistent electrical outputs with energy conversion efficiency an order of magnitude higher than those made of PVDF thin films. The early onset of the nonlinear domain wall motions behavior has been identified as one mechanism responsible for the apparent high piezoelectricity in nanofibers, rendering them potentially advantageous for sensing and actuation applications.

1,169 citations

Journal ArticleDOI
TL;DR: This Review presents a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications.
Abstract: Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers...

1,143 citations