scispace - formally typeset
Search or ask a question
Author

Yongguang Tu

Bio: Yongguang Tu is an academic researcher from Northwestern Polytechnical University. The author has contributed to research in topics: Perovskite (structure) & Dye-sensitized solar cell. The author has an hindex of 23, co-authored 50 publications receiving 2291 citations. Previous affiliations of Yongguang Tu include Huaqiao University & Peking University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
29 Jun 2018-Science
TL;DR: This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in Voc by up to 100 millivolts, which led to a stabilized power output approaching 21% at the maximum power point.
Abstract: The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (Voc). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in Voc by up to 100 millivolts. We achieved a high Voc of 1.21 volts without sacrificing photocurrent, corresponding to a voltage deficit of 0.41 volts at a bandgap of 1.62 electron volts. This improvement led to a stabilized power output approaching 21% at the maximum power point.

1,117 citations

Journal ArticleDOI
TL;DR: In this paper, an ultrathin low-dimensional perovskite (LDP) interlayer was introduced close to the PEDOT:PSS/perovsite interface, which improved film morphology and reduced trap states.

162 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental properties of buried interfaces in perovskite photovoltaics are investigated by combining advanced in situ spectroscopy techniques with a facile lift-off strategy.
Abstract: Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

152 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of recent progress in perovskite solar cells for space applications in terms of performance evolution and mechanism exploration, as well as devices under space extreme environments.
Abstract: Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next-generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III-V multi-junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.

136 citations

Journal ArticleDOI
TL;DR: In this article, a group of researchers at Peking University in China, led by Dr. Rui Zhu and Prof. Qihuang Gong in collaboration with Prof. Guoning Xu from Academy of Opto-Electronics, CAS, and Prof Wei Huang from Northwestern Polytechnical University, have reported the stability study of perovskite solar cells in near space.
Abstract: With the continuous improvement of efficiency and stability, perovskite solar cells are gradually approaching practical applications. PSCs may show the special application in space where oxygen and moisture (two major stressors for stability) barely exist. Publishing in Sci. ChinaPhys. Mech. Astron., a group of researchers at Peking University in China, led by Dr. Rui Zhu and Prof. Qihuang Gong in collaboration with Prof. Guoning Xu from Academy of Opto-Electronics, CAS, and Prof. Wei Huang from Northwestern Polytechnical University, have reported the stability study of PSCs in near space.

119 citations


Cited by
More filters
Journal ArticleDOI
21 Sep 2018-Science
TL;DR: Recent progress in addressing stability, how to allow mass production, and how to maintain uniformity of large-area films are reviewed, and the remaining challenges along the pathway to their commercialization are discussed.
Abstract: BACKGROUND Perovskite solar cells (PSCs) have attracted intensive attention because of their ever-increasing power conversion effi­ciency (PCE), low-cost materials constituents, and simple solution fabrication process. Initi­ated in 2009 with an efficiency of 3.8%, PSCs have now achieved a lab-scale power conversion efficiency of 23.3%, rivaling the performance of commercial multicrystalline silicon solar cells, as well as copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) thin-film solar cells. Thousands of articles re­lated to PSCs have been published each year since 2015, highlighting PSCs as a topic of in­tense interest in photovoltaics (PV) research. With high efficiencies achieved in lab devices, stability and remaining challenges in upscal­ing the manufacture of PSCs are two critical concerns that must be addressed on the path to PSC commercialization. ADVANCES We review recent progress in PSCs and discuss the remaining challenges along the pathway to their commercialization. Device configurations of PSCs (see the figure) include mesoscopic formal (n-i-p) and inverted (p-i-n) structures, planar formal and inverted struc­tures, and the printable triple mesoscopic structures. PCEs of devices that use these structures have advanced rapidly in the case of small-area devices (~0.1 cm 2 ). PSCs are also attracting attention as top cells for the construction of tandem solar cells with existing mature PV technologies to increase efficiency beyond the Shockley-Queisser limit of single-junction devices. The stability of PSCs has attracted much well-deserved attention of late, and notable progress has been made in the past few years. PSCs have recently achieved exhibited life­times of 10,000 hours under 1 sun (1 kW/m 2 ) illumina­tion with an ultraviolet filter at a stabilized temperature of 55°C and at short-circuit conditions for a printable triple mesoscopic PSCs. This irradiation is equivalent to the total irradiation of 10 years of outdoor use in most of Europe. However, within the PSC community, standard testing protocols require further development. In addition, transpar­ency in reporting standards on stability tests needs to be improved; this can be achieved by providing both initial photovoltaic performance and normalization parameters. The upscaling of PSCs has also progressed steadily, leading to PSC mini-modules, standard-sized modules, and power systems. PV companies have set out to manufacture large-area PSC modules (see the figure), and a 110-m 2 perovskite PV system with screen-printed triple mesoscopic PSC modules was recently debuted. Studies of these increased-area modules and systems will promote the development of PSCs toward commercializa­tion. PSC research is expanding to cover fundamental topics on materials and lab-sized cells, as well as to address issues of in­dustrial-scale manufacturing and deployment. OUTLOOK The PV market has been continu­ously expanding in recent years, bringing op­portunities for new PV technologies of which PSCs are promising candidates. It is impera­tive to achieve a low cost per watt, which means that both efficiency and lifetime need improve­ment relative to current parameters. The efficiency gap between lab cells and industrial modules has seen impressive reduc­tions in crystalline silicon; PSCs must simi­larly enlarge module areas to the panel level and need to achieve lifetimes comparable to those of legacy PV technologies. Other improvements will need to include industry-scale electronic-grade films, recycling methods to address concerns regarding lead toxicity, and the adoption of standardized testing protocols to predict the operation lifetime of PSCs. Modules will need to endure light-induced degradation, potential-induced degradation, partial-shade stress, and mechanical shock. The field can benefit from lessons learned during the development of mature PV technologies as it strives to de­fine, and overcome, the hurdles to PSC com­mercial impact.

1,160 citations

Journal ArticleDOI
18 Sep 2019-Joule
TL;DR: In this article, the function of methylammonium chloride (MACl) additive in formamidinium lead iodide (FAPbI3)-based perovskite was studied.

1,064 citations

Journal ArticleDOI
01 Jul 2019-Nature
TL;DR: Addition of an ionic liquid, BMIMBF4, to metal halide perovskite solar cells improves their efficiency and long-term operation under accelerated aging conditions of high temperature and full-spectrum sunlight.
Abstract: Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been gre ...

939 citations

Journal ArticleDOI
11 Dec 2020-Science
TL;DR: A monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15% is reported, made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovSKite cell.
Abstract: Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.

876 citations