scispace - formally typeset
Search or ask a question
Author

Yonghao Chen

Bio: Yonghao Chen is an academic researcher from Tsinghua University. The author has contributed to research in topics: Asynchronous communication & Softmax function. The author has an hindex of 1, co-authored 4 publications receiving 5 citations. Previous affiliations of Yonghao Chen include Beijing University of Posts and Telecommunications.

Papers
More filters
Journal ArticleDOI
TL;DR: This study proposed a new training-free dynamical optimization algorithm, which significantly improved the performance of online SSVEP-based BCI systems and significantly outperforms STE-DW and FBCCA-FW in terms of accuracy and ITR.
Abstract: Objective: Filter bank canonical correlation analysis (FBCCA) is a widely-used classification approach implemented in steady-state visual evoked potential (SSVEP)–based brain-computer interfaces (BCIs). However, conventional detection algorithms for SSVEP recognition problems, including the FBCCA, were usually based on 'fixed window' strategy. That's to say, these algorithms always analyze data with fixed length. This study devoted to enhance the performance of SSVEP-based BCIs by designing a new dynamic window strategy which automatically finds an optimal data length to achieve higher information transfer rate (ITR). Approach: The main purpose of 'dynamic window' is to minimize the required data length while maintaining high accuracy. This study projected the correlation coefficients of FBCCA into probability space by softmax function and built a hypothesis testing model, which took risk function as evaluation of classification result's 'credibility'. In order to evaluate the superiority of this approach, FBCCA with fixed data length (FBCCA-FW) and spatial temporal equalization dynamic window (STE-DW) were implemented for comparison. Main results: Fourteen healthy subjects' results were concluded by a 40-target online SSVEP-based BCI speller system. The results suggest that this proposed approach significantly outperforms STE-DW and FBCCA-FW in terms of accuracy and ITR. Significance: By incorporating the fundamental ideas of FBCCA and dynamic window strategy, this study proposed a new training-free dynamical optimization algorithm, which significantly improved the performance of online SSVEP-based BCI systems.

53 citations

Journal ArticleDOI
TL;DR: In this article, a calibration-free SSVEP-BCI system implemented 160 targets by four continuous sinusoidal stimuli that lasted four seconds in total, and the system achieved an average accuracy of 87.16 ± 11.46% and information transfer rate of 78.84 ± 15.59 bits min-1.
Abstract: Objective.Steady-state visual evoked potential (SSVEP) is an essential paradigm of electroencephalogram based brain-computer interface (BCI). Previous studies in the BCI research field mostly focused on enhancing classification accuracy and reducing stimuli duration. This study, however, concentrated on increasing the number of available targets in the BCI systems without calibration.Approach. Motivated by the idea of multiple frequency sequential coding, we developed a calibration-free SSVEP-BCI system implementing 160 targets by four continuous sinusoidal stimuli that lasted four seconds in total. Taking advantage of the benchmark dataset of SSVEP-BCI, this study optimized an arrangement of stimuli sequences, maximizing the response distance between different stimuli. We proposed an effective classification algorithm based on filter bank canonical correlation analysis. To evaluate the performance of this system, we conducted offline and online experiments using cue-guided selection tasks. Eight subjects participated in the offline experiments, and 12 subjects participated in the online experiments with real-time feedbacks.Mainresults. Offline experiments indicated the feasibility of the stimulation selection and detection algorithms. Furthermore, the online system achieved an average accuracy of 87.16 ± 11.46% and an information transfer rate of 78.84 ± 15.59 bits min-1. Specifically, seven of 12 subjects accomplished online experiments with accuracy higher than 90%. This study proposed an intact solution of applying numerous targets to SSVEP-based BCIs. Results of experiments confirmed the utility and efficiency of the system.Significance. This study firstly provides a calibration-free SSVEP-BCI speller system that enables more than 100 commands. This system could significantly expand the application scenario of SSVEP-based BCI. Meanwhile, the design criterion can hopefully enhance the overall performance of the BCI system. The demo video can be found in the supplementary material available online atstacks.iop.org/JNE/18/046094/mmedia.

39 citations

Journal ArticleDOI
05 Mar 2020
TL;DR: This study applied a steady-state visual evoked potential based brain–computer interface (BCI) system to a patient in lock-in state with amyotrophic lateral sclerosis and validated its feasibility for communication.
Abstract: This study applied a steady-state visual evoked potential (SSVEP) based brain–computer interface (BCI) to a patient in lock-in state with amyotrophic lateral sclerosis (ALS) and validated its feasibility for communication. The developed calibration-free and asynchronous spelling system provided a natural and efficient communication experience for the patient, achieving a maximum free-spelling accuracy above 90% and an information transfer rate of over 22.203 bits/min. A set of standard frequency scanning and task spelling data were also acquired to evaluate the patient’s SSVEP response and to facilitate further personalized BCI design. The results demonstrated that the proposed SSVEP-based BCI system was practical and efficient enough to provide daily life communication for ALS patients.

12 citations

Journal ArticleDOI
TL;DR: In this article, a spatio-temporal equalization multi-window algorithm (STE-MW) was proposed for asynchronous detection of steady-state visual evoked potential (SSVEP) without the need for acquiring calibration data.
Abstract: Objective: Asynchronous brain-computer interfaces (BCIs) show significant advantages in many practical application scenarios. Compared with the rapid development of synchronous BCIs technology, the progress of asynchronous BCI research, in terms of containing multiple targets and training-free detection, is still relatively slow. In order to improve the practicability of the brain-computer interface, a spatio-temporal equalization multi-window algorithm (STE-MW) was proposed for asynchronous detection of steady-state visual evoked potential (SSVEP) without the need for acquiring calibration data. Approach: The algorithm used spatio-temporal equalization strategy to intercept EEG signals of different lengths through multiple stacked time windows and statistical decisions-making based on Bayesian risk decision-making. Different from the traditional asynchronous algorithms based on the "non-control state detection" methods, this algorithm was based on the "statistical inspection-rejection decision" mode and did not require a separate classification of non-control states, so it can be effectively applied to detections for large-scale candidates. Main results: Online experimental results involving fourteen healthy subjects showed that, in the continuously input experiments of 40 targets, the algorithm achieved the average recognition accuracy of 97.2%±2.6% and the average information transfer rate of 106.3±32.0 bits/min. At the same time, the average false alarm rate in the 240-seconds resting state test was 0.607±0.602 min^(-1). In the free spelling experiments involving patients with severe amyotrophic lateral sclerosis, the subjects achieved an accuracy of 92.7% and an average information transfer rate of 43.65 bits/min in two free spelling experiments. Significance: This algorithm can achieve high-performance, high-precision, and asynchronous detection of SSVEP signals with low algorithm complexity and false alarm rate under multi-targets and training-free conditions, which is helpful for the development of asynchronous BCI systems.

10 citations

Journal ArticleDOI
TL;DR: This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate and it can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli.
Abstract: The optimization of coding stimulus is a crucial factor in the study of steady-state visual evoked potential (SSVEP)-based brain-computer interface(BCI).This study proposed an encoding approach named Multi-Symbol Time Division Coding (MSTDC). This approach is based on a protocol of maximizing the distance between neural responses, which aims to encode stimulation systems implementing any number of targets with finite stimulations of different frequencies and phases. Firstly, this study designed an SSVEP-based BCI system containing forty targets with this approach. The stimulation encoding of this system was achieved with four temporal-divided stimuli that adopt the same frequency of 30 Hz and different phases. During the online experiments of twelve subjects, this system achieved an average accuracy of $96.77 \pm 2.47$ % and an average information transfer rate (ITR) of 119.05 ± 6.11 bits/min. This study also devised an SSVEP-based BCI system containing 72 targets and proposed a Template Splicing task-related component analysis (TRCA) algorithm that utilized the dataset of the previous system containing forty targets as the training dataset. The subjects acquired an average accuracy of 86.23 ± 7.75% and an average ITR of 95.68 ± 14.19 bits/min. It can be inferred that MSTDC can encode multiple targets with limited frequencies and phases of stimuli. Meanwhile, this protocol can be effortlessly expanded into other systems and sufficiently reduce the cost of collecting training data. This study provides a feasible technique for obtaining a comfortable SSVEP-based BCI with multiple targets while maintaining high information transfer rate.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a calibration-free SSVEP-BCI system implemented 160 targets by four continuous sinusoidal stimuli that lasted four seconds in total, and the system achieved an average accuracy of 87.16 ± 11.46% and information transfer rate of 78.84 ± 15.59 bits min-1.
Abstract: Objective.Steady-state visual evoked potential (SSVEP) is an essential paradigm of electroencephalogram based brain-computer interface (BCI). Previous studies in the BCI research field mostly focused on enhancing classification accuracy and reducing stimuli duration. This study, however, concentrated on increasing the number of available targets in the BCI systems without calibration.Approach. Motivated by the idea of multiple frequency sequential coding, we developed a calibration-free SSVEP-BCI system implementing 160 targets by four continuous sinusoidal stimuli that lasted four seconds in total. Taking advantage of the benchmark dataset of SSVEP-BCI, this study optimized an arrangement of stimuli sequences, maximizing the response distance between different stimuli. We proposed an effective classification algorithm based on filter bank canonical correlation analysis. To evaluate the performance of this system, we conducted offline and online experiments using cue-guided selection tasks. Eight subjects participated in the offline experiments, and 12 subjects participated in the online experiments with real-time feedbacks.Mainresults. Offline experiments indicated the feasibility of the stimulation selection and detection algorithms. Furthermore, the online system achieved an average accuracy of 87.16 ± 11.46% and an information transfer rate of 78.84 ± 15.59 bits min-1. Specifically, seven of 12 subjects accomplished online experiments with accuracy higher than 90%. This study proposed an intact solution of applying numerous targets to SSVEP-based BCIs. Results of experiments confirmed the utility and efficiency of the system.Significance. This study firstly provides a calibration-free SSVEP-BCI speller system that enables more than 100 commands. This system could significantly expand the application scenario of SSVEP-based BCI. Meanwhile, the design criterion can hopefully enhance the overall performance of the BCI system. The demo video can be found in the supplementary material available online atstacks.iop.org/JNE/18/046094/mmedia.

39 citations

Journal ArticleDOI
TL;DR: In this paper , a measurement system is proposed based on the classification of Steady State Visually Evoked Potentials (SSVEPs) using machine learning classifiers and convolutional neural networks.
Abstract: This work addresses the adoption of Machine Learning classifiers and Convolutional Neural Networks to improve the performance of highly wearable, single-channel instrumentation for Brain-Computer Interfaces. The proposed measurement system is based on the classification of Steady- State Visually Evoked Potentials (SSVEPs). In particular, Head-Mounted Displays for Augmented Reality are used to generate and display the flickering stimuli for the SSVEPs elicitation. Four experiments were conducted by employing, in turn, a different Head-Mounted Display. For each experiment, two different algorithms were applied and compared with the state-of-the-art-techniques. Furthermore, the impact of different Augmented Reality technologies in the elicitation and classification of SSVEPs was also explored. The experimental metrological characterization demonstrates (i) that the proposed Machine Learning-based processing strategies providea significantenhancement of theSSVEPclassification accuracy with respect to the state of the art, and (ii) that choosing an adequate Head-Mounted Display is crucial to obtain acceptable performance. Finally, it is also shown that the adoption of inter-subjective validation strategies such as the Leave-One-Subject-Out Cross Validation successfully leads to an increase in the inter-individual 1- $\sigma$ reproducibility: this, in turn, anticipates an easier development of ready-to-use systems.

27 citations

Journal ArticleDOI
TL;DR: Recovery of hand function after rehabilitation of SSVEP-BCI controlled soft robotic glove showed better result than solely robotic glove rehabilitation, equivalent efficacy as results from previous reported MI- BCI robotic hand rehabilitation.
Abstract: Soft robotic glove with brain computer interfaces (BCI) control has been used for post-stroke hand function rehabilitation. Motor imagery (MI) based BCI with robotic aided devices has been demonstrated as an effective neural rehabilitation tool to improve post-stroke hand function. It is necessary for a user of MI-BCI to receive a long time training, while the user usually suffers unsuccessful and unsatisfying results in the beginning. To propose another non-invasive BCI paradigm rather than MI-BCI, steady-state visually evoked potentials (SSVEP) based BCI was proposed as user intension detection to trigger the soft robotic glove for post-stroke hand function rehabilitation. Thirty post-stroke patients with impaired hand function were randomly and equally divided into three groups to receive conventional, robotic, and BCI-robotic therapy in this randomized control trial (RCT). Clinical assessment of Fugl-Meyer Motor Assessment of Upper Limb (FMA-UL), Wolf Motor Function Test (WMFT) and Modified Ashworth Scale (MAS) were performed at pre-training, post-training and three months follow-up. In comparing to other groups, The BCI-robotic group showed significant improvement after training in FMA full score (10.05 ± 8.03, p = 0.001), FMA shoulder/elbow (6.2 ± 5.94, p = 0.0004) and FMA wrist/hand (4.3 ± 2.83, p = 0.007), and WMFT (5.1 ± 5.53, p = 0.037). The improvement of FMA was significantly correlated with BCI accuracy (r = 0.714, p = 0.032). Recovery of hand function after rehabilitation of SSVEP-BCI controlled soft robotic glove showed better result than solely robotic glove rehabilitation, equivalent efficacy as results from previous reported MI-BCI robotic hand rehabilitation. It proved the feasibility of SSVEP-BCI controlled soft robotic glove in post-stroke hand function rehabilitation.

10 citations

Journal ArticleDOI
TL;DR: In this article , steady-state visually evoked potentials (SSVEP) based BCI was proposed as user intension detection to trigger the soft robotic glove for post-stroke hand function rehabilitation.
Abstract: Soft robotic glove with brain computer interfaces (BCI) control has been used for post-stroke hand function rehabilitation. Motor imagery (MI) based BCI with robotic aided devices has been demonstrated as an effective neural rehabilitation tool to improve post-stroke hand function. It is necessary for a user of MI-BCI to receive a long time training, while the user usually suffers unsuccessful and unsatisfying results in the beginning. To propose another non-invasive BCI paradigm rather than MI-BCI, steady-state visually evoked potentials (SSVEP) based BCI was proposed as user intension detection to trigger the soft robotic glove for post-stroke hand function rehabilitation. Thirty post-stroke patients with impaired hand function were randomly and equally divided into three groups to receive conventional, robotic, and BCI-robotic therapy in this randomized control trial (RCT). Clinical assessment of Fugl-Meyer Motor Assessment of Upper Limb (FMA-UL), Wolf Motor Function Test (WMFT) and Modified Ashworth Scale (MAS) were performed at pre-training, post-training and three months follow-up. In comparing to other groups, The BCI-robotic group showed significant improvement after training in FMA full score (10.05 ± 8.03, p = 0.001), FMA shoulder/elbow (6.2 ± 5.94, p = 0.0004) and FMA wrist/hand (4.3 ± 2.83, p = 0.007), and WMFT (5.1 ± 5.53, p = 0.037). The improvement of FMA was significantly correlated with BCI accuracy (r = 0.714, p = 0.032). Recovery of hand function after rehabilitation of SSVEP-BCI controlled soft robotic glove showed better result than solely robotic glove rehabilitation, equivalent efficacy as results from previous reported MI-BCI robotic hand rehabilitation. It proved the feasibility of SSVEP-BCI controlled soft robotic glove in post-stroke hand function rehabilitation.

10 citations

Journal ArticleDOI
TL;DR: In this article , an online adaptation scheme is developed to tune the spatial filters using the online unlabeled data from previous trials, and then developing the online adaptive canonical correlation analysis (OACCA) method.
Abstract: A user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) prefers no calibration for its target recognition algorithm, however, the existing calibration-free schemes perform still far behind their calibration-based counterparts. To tackle this issue, learning online from the subject's unlabeled data is investigated as a potential approach to boost the performance of the calibration-free SSVEP-based BCIs.An online adaptation scheme is developed to tune the spatial filters using the online unlabeled data from previous trials, and then developing the online adaptive canonical correlation analysis (OACCA) method.A simulation study on two public SSVEP datasets (Dataset I and II) with a total of 105 subjects demonstrated that the proposed online adaptation scheme can boost the CCA's averaged information transfer rate (ITR) from 94.60 to 158.87 bits/min in Dataset I and from 85.80 to 123.91 bits/min in Dataset II. Furthermore, in our online experiment it boosted the CCA's ITR from 55.81 bits/min to 95.73 bits/min. More importantly, this online adaptation scheme can be easily combined with any spatial filtering-based algorithms to achieve online learning.By online adaptation, the proposed OACCA performed much better than the calibration-free CCA, and comparable to the calibration-based algorithms.This work provides a general way for the SSVEP-based BCIs to learn online from unlabeled data and thus avoid calibration.

8 citations