scispace - formally typeset
Search or ask a question
Author

Yonghua Xiong

Other affiliations: Jiangxi Normal University
Bio: Yonghua Xiong is an academic researcher from Nanchang University. The author has contributed to research in topics: Detection limit & Medicine. The author has an hindex of 43, co-authored 169 publications receiving 5672 citations. Previous affiliations of Yonghua Xiong include Jiangxi Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: This review elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprops, and their potential biomedical applications for targeting specific biomolecule populations.
Abstract: Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.

509 citations

Journal ArticleDOI
TL;DR: This review highlights the superiority of NP-based approaches over existing conventional strategies for clinical analysis, food safety, and environmental monitoring and discusses how colored and luminescent NPs are integrated into membrane-based LFICS for the detection of target analytes.

347 citations

Journal ArticleDOI
TL;DR: This work re-port CRISPR-Cas12a sensors that are regulated by functional DNA (fDNA) molecules such as aptamers and DNAzymes that are selective for small organic molecule and metal ion detections that are suitable for field tests or point-of-care diagnostics.
Abstract: Beyond its extraordinary genome editing ability, the CRISPR-Cas systems have opened a new era of biosensing applications due to its high base resolution and isothermal signal amplification. However, the reported CRISPR-Cas sensors are largely only used for the detection of nucleic acids with limited application for non-nucleic-acid targets. To realize the full potential of the CRISPR-Cas sensors and broaden their applications for detection and quantitation of non-nucleic-acid targets, we herein report CRISPR-Cas12a sensors that are regulated by functional DNA (fDNA) molecules such as aptamers and DNAzymes that are selective for small organic molecule and metal ion detection. The sensors are based on the Cas12a-dependent reporter system consisting of Cas12a, CRISPR RNA (crRNA), and its single-stranded DNA substrate labeled with a fluorophore and quencher at each end (ssDNA-FQ), and fDNA molecules that can lock a DNA activator for Cas12a-crRNA, preventing the ssDNA cleavage function of Cas12a in the absence of the fDNA targets. The presence of fDNA targets can trigger the unlocking of the DNA activator, which can then activate the cleavage of ssDNA-FQ by Cas12a, resulting in an increase of the fluorescent signal detectable by commercially available portable fluorimeters. Using this method, ATP and Na+ have been detected quantitatively under ambient temperature (25 °C) using a simple and fast detection workflow (two steps and <15 min), making the fDNA-regulated CRISPR system suitable for field tests or point-of-care diagnostics. Since fDNAs can be obtained to recognize a wide range of targets, the methods demonstrated here can expand this powerful CRISPR-Cas sensor system significantly to many other targets and thus provide a new toolbox to significantly expand the CRISPR-Cas system into many areas of bioanalytical and biomedical applications.

347 citations

Journal ArticleDOI
TL;DR: Results showed that the nanosized magnetic nanoparticles exhibited an enrichment factor (cancer cells over normal cells) of 1:10,000,000 in a magnetic field through the binding of IO-Ab on the cell surface that resulted in the preferential capture of the cancer cells.

320 citations

Journal ArticleDOI
TL;DR: The proposed QB-ICA offers great potential for rapid, sensitive, and cost-effective quantitative detection of analytes in food safety monitoring and is even comparable with or better than the conventional enzyme-linked immunosorbent assay (ELISA) method.
Abstract: Highly luminescent quantum dot beads (QBs) were synthesized by encapsulating CdSe/ZnS and used for the first time as immunochromatographic assay (ICA) signal amplification probe for ultrasensitive detection of aflatoxin B1 (AFB1) in maize. The challenges to using high brightness QBs as probes for ICA are smooth flow of QBs and nonspecific binding on nitrocellulose (NC) membrane, which are overcome by unique polymer encapsulation of quantum dots (QDs) and surface blocking method. Under optimal conditions, the QB-based ICA (QB-ICA) sensor exhibited dynamic linear detection of AFB1 in maize extract from 5 to 60 pg mL–1, with a median inhibitory concentration (IC50) of 13.87 ± 0.16 pg mL–1, that is significantly (39-fold) lower than those of the QD as a signal probe (IC50 = 0.54 ± 0.06 ng mL–1). The limit of detection (LOD) for AFB1 using QB-ICA sensor was 0.42 pg mL–1 in maize extract, which is approximately 2 orders of magnitude better than those of previously reported gold nanoparticle based immunochromato...

223 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

18 Nov 2011
TL;DR: This article corrects the article on p. 485 in vol.
Abstract: Listeria monocytogenes is a Gram positive, aerobic, facultative anaerobic and nonacid fast bacterium, which can cause the disease listeriosis in both human and animals. It is widely distributed thoroughout the environment and has been isolated from various plant and animal food products associated with listeriosis outbreaks. Contaminated ready-to-eat food products such as gravad and cold-smoked salmon and rainbow trout have been associated with human listeriosis in Sweden. The aim of this study was to analyse the occurrence and level of L. monocytogenes in gravad and cold-smoked salmon (Salmo salar) products packed under vacuum or modified atmosphere from retail outlets in Sweden. Isolated strains were characterized by serotyping and the diversity of the strains within and between producers were determined with PFGE (Pulsed-field gel electrophoresis). The characterized fish isolates were compared with previously characterized human strains. L. monocytogenes was isolated from 11 (three manufacturers) of 56 products analysed. This included gravad salmon products from three manufacturers and cold-smoked salmon from one manufacturer. The highest level of L. monocytogenes found was 1500 cfu/g from a cold-smoked salmon product but the level was low (<100 cfu/g) in most of the products. Serovar 1/2a was predominant, followed by 4b. Three products of gravad salmon harboured more than one serovar. PFGE typing of the 56 salmon isolates detected five Asc I types: four types were identical to human clinical strains with Asc I and one was identical and one was closely related to human clinical strains with Apa I. Isolation of identical or closely related L. monocytogenes strains from human clinical cases of listeriosis and gravad and cold-smoked salmon suggested that these kinds of products are possible sources of listeriosis in Sweden. Therefore, these products should be considered risk products for human listeriosis.

1,103 citations

Journal ArticleDOI
TL;DR: This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays, and the major recent advances and future diagnostic applications in the LFA field are explored.
Abstract: Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored.

699 citations

Journal ArticleDOI
TL;DR: The synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre‐) clinical use in diagnostic, therapeutic and theranostic settings, are summarized.

618 citations

Journal ArticleDOI
TL;DR: This review focuses on the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries.

584 citations