scispace - formally typeset
Search or ask a question
Author

Yonghuang Ye

Other affiliations: Tsinghua University
Bio: Yonghuang Ye is an academic researcher from National University of Singapore. The author has contributed to research in topics: Battery (electricity) & Lithium-ion battery. The author has an hindex of 15, co-authored 15 publications receiving 1636 citations. Previous affiliations of Yonghuang Ye include Tsinghua University.

Papers
More filters
Journal ArticleDOI
Yonghuang Ye1, Yixiang Shi1, Ningsheng Cai1, Jianjun Lee1, Xiangming He1 
TL;DR: In this paper, a mathematical model coupling electronic conduction, mass transfer, energy balance and electrochemical mechanism is developed to estimate lithium ion diffusivity and chemical reaction rate of cathode material.

327 citations

Journal ArticleDOI
TL;DR: In this paper, computational fluid dynamic analysis is performed to investigate the air cooling system for a 38,120 cell battery pack, and the correlation between Nu number and Re number were deduced from the numerical modeling results and compared with literature.

318 citations

Journal ArticleDOI
TL;DR: In this article, the integration of Li-ion battery into an EV battery pack is investigated from different aspects, namely different battery chemistry, cell packaging, electric connection and control, thermal management, assembly and service and maintenance.

287 citations

Journal ArticleDOI
TL;DR: In this paper, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack, and a numerical model is developed and comprehensively validated with experimental results.

249 citations

Journal ArticleDOI
TL;DR: A pseudo two dimensional electrochemical coupled with a lumped thermal model has been developed to analyze the electrochemical and thermal behavior of the commercial 18650 Lithium Iron Phosphate battery as mentioned in this paper.

195 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review evaluates the potential of a series of promising batteries and hydrogen fuel cells in their deployment in automotive electrification and identifies six energy storage and conversion technologies that possess varying combinations of these improved characteristics.
Abstract: Today’s electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome. Recent years have seen significant growth of electric vehicles and extensive development of energy storage technologies. This Review evaluates the potential of a series of promising batteries and hydrogen fuel cells in their deployment in automotive electrification.

1,706 citations

Journal ArticleDOI
Xuning Feng1, Minggao Ouyang1, Xiang Liu1, Languang Lu1, Yong Xia1, Xiangming He1 
TL;DR: In this article, the authors provided a comprehensive review on the thermal runaway mechanism of the commercial lithium ion battery for electric vehicles, and a three-level protection concept was proposed to help reduce thermal runaway hazard.

1,604 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the battery state of charge estimation and its management system for the sustainable future electric vehicles (EVs) applications is presented, which can guarantee a reliable and safe operation and assess the battery SOC.
Abstract: Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels, the electric vehicles (EVs) receive massive popularity due to their performances and efficiencies in recent decades. EVs have already been widely accepted in the automotive industries considering the most promising replacements in reducing CO2 emissions and global environmental issues. Lithium-ion batteries have attained huge attention in EVs application due to their lucrative features such as lightweight, fast charging, high energy density, low self-discharge and long lifespan. This paper comprehensively reviews the lithium-ion battery state of charge (SOC) estimation and its management system towards the sustainable future EV applications. The significance of battery management system (BMS) employing lithium-ion batteries is presented, which can guarantee a reliable and safe operation and assess the battery SOC. The review identifies that the SOC is a crucial parameter as it signifies the remaining available energy in a battery that provides an idea about charging/discharging strategies and protect the battery from overcharging/over discharging. It is also observed that the SOC of the existing lithium-ion batteries have a good contribution to run the EVs safely and efficiently with their charging/discharging capabilities. However, they still have some challenges due to their complex electro-chemical reactions, performance degradation and lack of accuracy towards the enhancement of battery performance and life. The classification of the estimation methodologies to estimate SOC focusing with the estimation model/algorithm, benefits, drawbacks and estimation error are extensively reviewed. The review highlights many factors and challenges with possible recommendations for the development of BMS and estimation of SOC in next-generation EV applications. All the highlighted insights of this review will widen the increasing efforts towards the development of the advanced SOC estimation method and energy management system of lithium-ion battery for the future high-tech EV applications.

1,150 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the challenges and future research directions towards fast charging at the level of battery materials from mass transport, charge transfer and thermal management perspectives, and highlight advanced characterization techniques to understand the failure mechanisms of batteries during fast charging, which in turn would inform more rational battery designs.
Abstract: Extreme fast charging, with a goal of 15 minutes recharge time, is poised to accelerate mass market adoption of electric vehicles, curb greenhouse gas emissions and, in turn, provide nations with greater energy security. However, the realization of such a goal requires research and development across multiple levels, with battery technology being a key technical barrier. The present-day high-energy lithium-ion batteries with graphite anodes and transition metal oxide cathodes in liquid electrolytes are unable to achieve the fast-charging goal without negatively affecting electrochemical performance and safety. Here we discuss the challenges and future research directions towards fast charging at the level of battery materials from mass transport, charge transfer and thermal management perspectives. Moreover, we highlight advanced characterization techniques to fundamentally understand the failure mechanisms of batteries during fast charging, which in turn would inform more rational battery designs. Along with high energy density, fast-charging ability would enable battery-powered electric vehicles. Here Yi Cui and colleagues review battery materials requirements for fast charging and discuss future design strategies.

866 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of cold temperatures on the capacity/power fade of Li-ion battery technology are discussed, along with thermal strategies and the ideal approach to cold-temperature operation.

711 citations