scispace - formally typeset
Search or ask a question
Author

Yongjun Xu

Other affiliations: Jilin University, Shandong University, Xidian University  ...read more
Bio: Yongjun Xu is an academic researcher from Chongqing University of Posts and Telecommunications. The author has contributed to research in topics: Resource allocation & Optimization problem. The author has an hindex of 12, co-authored 89 publications receiving 644 citations. Previous affiliations of Yongjun Xu include Jilin University & Shandong University.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey on RA in HetNets for 5G communications is provided and two potential structures for 6G communications are provided, such as a learning-based RA structure and a control- based RA structure.
Abstract: In the fifth-generation (5G) mobile communication system, various service requirements of different communication environments are expected to be satisfied. As a new evolution network structure, heterogeneous network (HetNet) has been studied in recent years. Compared with homogeneous networks, HetNets can increase the opportunity in the spatial resource reuse and improve users’ quality of service by developing small cells into the coverage of macrocells. Since there is mutual interference among different users and the limited spectrum resource in HetNets, however, efficient resource allocation (RA) algorithms are vitally important to reduce the mutual interference and achieve spectrum sharing. In this article, we provide a comprehensive survey on RA in HetNets for 5G communications. Specifically, we first introduce the definition and different network scenarios of HetNets. Second, RA models are discussed. Then, we present a classification to analyze current RA algorithms for the existing works. Finally, some challenging issues and future research trends are discussed. Accordingly, we provide two potential structures for 6G communications to solve the RA problems of the next-generation HetNets, such as a learning-based RA structure and a control-based RA structure. The goal of this article is to provide important information on HetNets, which could be used to guide the development of more efficient techniques in this research area.

321 citations

Journal ArticleDOI
27 Aug 2018-Sensors
TL;DR: An RSSI real-time correction method based on Bluetooth gateway which is used to detect the RSSI fluctuations of surrounding Bluetooth nodes and upload them to the cloud server and shows that the proposed method has better positioning accuracy than the traditional method.
Abstract: The Global Navigation Satellite System (GNSS) cannot achieve accurate positioning and navigation in the indoor environment Therefore, efficient indoor positioning technology has become a very active research topic Bluetooth beacon positioning is one of the most widely used technologies Because of the time-varying characteristics of the Bluetooth received signal strength indication (RSSI), traditional positioning algorithms have large ranging errors because they use fixed path loss models In this paper, we propose an RSSI real-time correction method based on Bluetooth gateway which is used to detect the RSSI fluctuations of surrounding Bluetooth nodes and upload them to the cloud server The terminal to be located collects the RSSIs of surrounding Bluetooth nodes, and then adjusts them by the RSSI fluctuation information stored on the server in real-time The adjusted RSSIs can be used for calculation and achieve smaller positioning error Moreover, it is difficult to accurately fit the RSSI distance model with the logarithmic distance loss model due to the complex electromagnetic environment in the room Therefore, the back propagation neural network optimized by particle swarm optimization (PSO-BPNN) is used to train the RSSI distance model to reduce the positioning error The experiment shows that the proposed method has better positioning accuracy than the traditional method

183 citations

Journal ArticleDOI
TL;DR: An overview on robust design for power control and beamforming in cognitive radio networks (CRNs) is given, modeling methods for parametric uncertainties are analyzed, various design methodologies are introduced, and robust algorithms that have appeared in the literatures are presented.
Abstract: Traditional spectrum allocation policies may result in temporarily unused radio spectrum. Cognitive radio (CR) has emerged as a promising technology to exploit the radio spectrum in a more efficient manner by allowing spectrum sharing between secondary users (SUs) and primary users (PUs). Power control and beamforming are two key techniques in CR design used to maximize the benefits of SUs, yet to maintain the quality of service of PUs. In practice, the available system parameters (e.g., channel state information and interference power) to enable power control and beamforming could be uncertain due to various factors such as estimation error and/or measurement error, thus the robustness of the designed algorithms should be considered in order to overcome the effects of parametric uncertainties. The objective of this paper is to give an overview on robust design for power control and beamforming in cognitive radio networks (CRNs). We will analyze modeling methods for parametric uncertainties, introduce various design methodologies, and present robust algorithms that have appeared in the literatures. Finally, some potential issues and future research directions in this field will be presented.

125 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an energy-efficient resource allocation (RA) problem in NOMA-backscatter communication networks with QoS guarantee, where the transmit power of the base station and the reflection coefficient of the backscatter device are jointly optimized.
Abstract: Energy efficiency (EE) is an important performance metric in communication systems. However, to the best of our knowledge, the energy-efficient resource allocation (RA) problem in non-orthogonal multiple access enabled backscatter communication networks (NOMA-BackComNet) comprehensively considering the user’s quality of service (QoS) has not been investigated. In this letter, we present the first attempt to solve the EE-based RA problem for NOMA-BackComNet with QoS guarantee. The objective is to maximize the EE of users subject to the QoS requirements of users, the decoding order of successive interference cancellation and the reflection coefficient (RC) constraint, where the transmit power of the base station and the RC of the backscatter device are jointly optimized. To solve this non-convex problem, we develop a novel iteration algorithm by using Dinkelbach’s method and the quadratic transformation approach. Simulation results verify the effectiveness of the proposed scheme in improving the EE by comparing it with the other schemes.

68 citations

Journal ArticleDOI
TL;DR: A robust power allocation and power splitting problem for downlink simultaneous wireless information and power transfer (SWIPT)-enabled HetNets is considered and the effectiveness of the proposed algorithm is demonstrated by simulation results from the perspective of EE and robustness.
Abstract: Heterogeneous network (HetNet) with energy harvesting is a promising technique to provide perpetual power supplies and ubiquitous coverage as well as high data rate for next-generation wireless communications. In this article, we consider a robust power allocation and power splitting (PS) problem for downlink simultaneous wireless information and power transfer (SWIPT)-enabled HetNets. The robust energy-efficiency (EE) maximization problem of femtocell users (FUs) is formulated under the outage-probability interference power constraint of macrocell user (MU), the maximum allowable transmission power of FU, and the EE-based outage constraint of each FU. The originally fractional optimization problem with the probabilistic constraint is NP-hard and difficult to solve. Without knowing the distribution of uncertain parameters, a min–max probability machine approach is first introduced to convert the semi-infinite optimization problem into a deterministic one which is transformed into a deterministic convex one by using the Dinkelbach method and the quadratic transformation approach. An iterative power allocation and PS scheme is obtained based on convex optimization methods. Finally, the effectiveness of the proposed algorithm is demonstrated by simulation results from the perspective of EE and robustness.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.

1,158 citations

Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, a nonlinear fractional programming problem is considered, where the objective function has a finite optimal value and it is assumed that g(x) + β + 0 for all x ∈ S,S is non-empty.
Abstract: In this chapter we deal with the following nonlinear fractional programming problem: $$P:\mathop{{\max }}\limits_{{x \in s}} q(x) = (f(x) + \alpha )/((x) + \beta )$$ where f, g: R n → R, α, β ∈ R, S ⊆ R n . To simplify things, and without restricting the generality of the problem, it is usually assumed that, g(x) + β + 0 for all x ∈ S,S is non-empty and that the objective function has a finite optimal value.

797 citations

Posted Content
TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
Abstract: What is a reconfigurable intelligent surface? What is a smart radio environment? What is a metasurface? How do metasurfaces work and how to model them? How to reconcile the mathematical theories of communication and electromagnetism? What are the most suitable uses and applications of reconfigurable intelligent surfaces in wireless networks? What are the most promising smart radio environments for wireless applications? What is the current state of research? What are the most important and challenging research issues to tackle? These are a few of the many questions that we investigate in this short opus, which has the threefold objective of introducing the emerging research field of smart radio environments empowered by reconfigurable intelligent surfaces, putting forth the need of reconciling and reuniting C. E. Shannon's mathematical theory of communication with G. Green's and J. C. Maxwell's mathematical theories of electromagnetism, and reporting pragmatic guidelines and recipes for employing appropriate physics-based models of metasurfaces in wireless communications.

663 citations

Book Chapter
01 Jan 2017
TL;DR: Considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic and the proposed system should be able to support enhanced delay-sensitive high-volume services.
Abstract: Radio access technologies for cellular mobile communications are typically characterized by multiple access schemes, e.g., frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and OFDMA. In the 4th generation (4G) mobile communication systems such as Long-Term Evolution (LTE) (Au et al., Uplink contention based SCMA for 5G radio access. Globecom Workshops (GC Wkshps), 2014. doi:10.1109/GLOCOMW.2014.7063547) and LTE-Advanced (Baracca et al., IEEE Trans. Commun., 2011. doi:10.1109/TCOMM.2011.121410.090252; Barry et al., Digital Communication, Kluwer, Dordrecht, 2004), standardized by the 3rd Generation Partnership Project (3GPP), orthogonal multiple access based on OFDMA or single carrier (SC)-FDMA is adopted. Orthogonal multiple access was a reasonable choice for achieving good system-level throughput performance with simple single-user detection. However, considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic. In addition the proposed system should be able to support enhanced delay-sensitive high-volume services such as video streaming and cloud computing. Another high-level target of 5G is reduced cost, higher energy efficiency and robustness against emergencies.

635 citations